Log in

Critical point of jamming transition in two-dimensional monodisperse systems

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

The existence of amorphous packings in two-dimensional monodisperse system is a classical unsolved problem. We get the energy minimum state by the energy minimization method of enthalpy under constant pressure conditions. Firstly, we find that there are two peaks in the experiment, which demonstrate the interesting features of the coexistence of crystals and amorphous crystals. And then, we confirm the critical point of jamming transition of the two-dimensional monodisperse is \(\phi_c=0.8418\). Finally, we prove that the jamming scaling is still satisfied in two-dimensional monodispersed system: \( G/B \sim p^{1/2}\) and vanishes as \( p\rightarrow 0\), and the boson peak shifts to lower frequencies for less compressed systems.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.J. Liu, S.R. Nagel, Nature 396, 21 (1998)

    Article  ADS  Google Scholar 

  2. C.S. O'Hern, L.E. Silbert, A.J. Liu, S.R. Nagel, Phys. Rev. E 68, 011306 (2003)

    Article  ADS  Google Scholar 

  3. R.D. Kamien, A.J. Liu, Phys. Rev. Lett. 99, 155501 (2007)

    Article  ADS  Google Scholar 

  4. W. Zheng, Y. Shi, N. Xu, Sci. China Chem. 58, 1013 (2015)

    Article  Google Scholar 

  5. J. Lin, W. Zheng, Phys. Rev. E 96, 033002 (2017)

    Article  ADS  Google Scholar 

  6. S. Papanikolaou, C.S. O'Hern, M.D. Shattuck, Phys. Rev. Lett. 110, 198002 (2013)

    Article  ADS  Google Scholar 

  7. S. Meyer, C.M. Song, Y.L. **, K. Wang, H.A. Makse, Phys. A 389, 5137 (2010)

    Article  Google Scholar 

  8. N. Xu, J. Blawzdziewicz, C.S. O'Hern, Phys. Rev. E 71, 061306 (2005)

    Article  ADS  Google Scholar 

  9. J.G. Berryman, Phys. Rev. A 27, 1053 (1983)

    Article  ADS  Google Scholar 

  10. S. Atkinson, F.H. Stillinger, S. Torquato, Proc. Natl. Acad. Sci. U.S.A. 111, 18436 (2014)

    Article  ADS  Google Scholar 

  11. S. Torquato, T.M. Truskett, P.G. Debenedetti, Phys. Rev. Lett. 84, 2064 (2000)

    Article  ADS  Google Scholar 

  12. A. Donev, S. Torquato, F.H. Stillinger, R. Connelly, Phys. Rev. E 70, 043301 (2004) 043302 (2004)

    Article  ADS  Google Scholar 

  13. C.S. O'Hern, L.E. Silbert, A.J. Liu, S.R. Nagel, Phys. Rev. E 70, 043302 (2004)

    Article  ADS  Google Scholar 

  14. W. Zheng, H. Liu, N. Xu, Phys. Rev. E 94, 062608 (2016)

    Article  ADS  Google Scholar 

  15. M. Allen, D. Tildesley, Computer Simulation of Liquids (Clarendeon (Oxford University Press), 1987)

  16. E. Bitzek, P. Koskinen, F. Gahler, M. Moseler, P. Gumbsch, Phys. Rev. Lett. 97, 170201 (2006)

    Article  ADS  Google Scholar 

  17. A.J. Liu, S.R. Nagel, Annu. Rev. Condens. Matter Phys. 1, 347 (2010)

    Article  ADS  Google Scholar 

  18. C.P. Goodrich, A.J. Liu, S.R. Nagel, Nat. Phys. 10, 578 (2014)

    Article  Google Scholar 

  19. M. Wyart, L.E. Silbert, S.R. Nagel, T.A. Witten, Phys. Rev. E 72, 051306 (2005)

    Article  ADS  Google Scholar 

  20. L.E. Silbert, A.J. Liu, S.R. Nagel, Phys. Rev. Lett. 95, 098301 (2005)

    Article  ADS  Google Scholar 

  21. P. Charbonneau, E.I. Corwin, G. Parisi, A. Poncet, F. Zamponi, Phys. Rev. Lett. 117, 045503 (2016)

    Article  ADS  Google Scholar 

  22. P. Tan, N. Xu, A.B. Schofield, L. Xu, Phys. Rev. Lett. 108, 095501 (2012)

    Article  ADS  Google Scholar 

  23. K. Chen, W.G. Ellenbroek, Z. Zhang, D.T. Chen, P.J. Yunker, S. Henkes, C. Brito, O. Dauchot, W. Van Saarloos, A.J. Liu et al., Phys. Rev. Lett. 105, 025501 (2010)

    Article  ADS  Google Scholar 

  24. P. Carl, Simon Goodrich, Martin Dagois-Bohy, Sidney R. van Hecke, Phys. Rev. E 90, 022201 (2014)

    Article  Google Scholar 

  25. Hao Liu, **aoyi **e, Ning Xu, Phys. Rev. Lett. 112, 145502 (2014)

    Article  ADS  Google Scholar 

  26. Hua Tong, Peng Tan, Ning Xu, Sci. Rep. 5, 15378 (2015)

    Article  ADS  Google Scholar 

  27. Patrick Charbonneau, Eric I. Corwin, Lin Fu, Georgios Tsekenis, Michael van der Naald, Phys. Rev. E 99, 020901(R) (2019)

    Article  Google Scholar 

  28. Georgios Tsekenis, Jamming Criticality of Near-Crystals, ar**v:2006.07373 [cond-mat.soft]

  29. Simon Dagois-Bohy, Brian P. Tighe, Johannes Simon, Silke Henkes, Martin Van Hecke, Phys. Rev. Lett. 109, 095703 (2012)

    Article  ADS  Google Scholar 

  30. Carl P. Goodrich, Andrea J. Liu, Sidney R. Nagel, Phys. Rev. Lett. 109, 095704 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Zheng.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, L., Zhao, C., Xu, Z. et al. Critical point of jamming transition in two-dimensional monodisperse systems. Eur. Phys. J. E 43, 75 (2020). https://doi.org/10.1140/epje/i2020-11998-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2020-11998-y

Keywords

Navigation