Log in

Manipulation of double-four-wave mixing in an atomic system under vortex-beam illumination

  • Regular Article – Optical Phenomena and Photonics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Here we study systematically the double-channel four-wave mixing (FWM) processing in an atomic medium by adjusting azimuthal and radial indices (i.e., l and p) of the Laguerre–Gaussian (LG) beams in the presence and absence of an elliptically polarized beam. It is found that there are \(\mid l_1-l_2\mid \) periods of phase jumps from \(-\pi \) to \(\pi \) as well as \(\mid p_1-p_2\mid \) raised phase surface and \(p_{\textrm{min}}\) \((p_{\textrm{min}}={\textrm{min}}\{p_1, p_2\})\) convex rings in the phase profile of the FWM-generated field under the combined action of two LG beams and two circularly polarized components of the elliptically polarized light. In such a case, there are \(p_{\textrm{max}}+1\) \((p_{\textrm{max}}={\textrm{max}}\{p_1, p_2\})\) concentric bright rings with a dark hollow center in the intensity distribution. However, the phase profile of the FWM field becomes twisted and displays petal-like structures under the action of four LG vortex beams. Compared with the situation of vortex and elliptically polarized beams illumination, the intensity pattern of the FWM field is distorted and multiple singularities occur at the transverse plane accompanied by zero-intensity regions. Our investigation shows the possibility of manipulating the intensity and phase profiles of the FWM-generated field, by purposely choosing appropriate azimuthal and radial mode indices of LG beams.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The data underlying this article will be shared on reasonable request to the corresponding author].

References

  1. T.Y. Fu, M. Sargent, Opt. Lett. 5, 433 (1980). https://doi.org/10.1364/OL.5.000433

    Article  ADS  Google Scholar 

  2. J.O. White, A. Yariv, Appl. Phys. Lett. 37, 5 (1980). https://doi.org/10.1063/1.91700

    Article  ADS  Google Scholar 

  3. L.D. Zhang, J. Evers, Phys. Rev. A 89, 013817 (2014). https://doi.org/10.1103/PhysRevA.89.013817

    Article  ADS  Google Scholar 

  4. C.J. McKinstrie, L. Mejling, M.G. Raymer, K. Rottwitt, Phys. Rev. A 85, 053829 (2012). https://doi.org/10.1103/PhysRevA.85.053829

    Article  ADS  Google Scholar 

  5. Y. Wu, J. Saldana, Y.F. Zhu, Phys. Rev. A 67, 013811 (2003). https://doi.org/10.1103/PhysRevA.67.013811

    Article  ADS  Google Scholar 

  6. I.H. Agha, Y. Okawachi, A.L. Gaeta, Opt. Express 17, 16209 (2009). https://doi.org/10.1364/OE.17.016209

    Article  ADS  Google Scholar 

  7. G.Q. Yang, P. Xu, J. Wang, Y.F. Zhu, M.S. Zhan, Phys. Rev. A 82, 045804 (2010). https://doi.org/10.1103/PhysRevA.82.045804

    Article  ADS  Google Scholar 

  8. A. Kölle, G. Epple, H. Kübler, R. Löw, T. Pfau, Phys. Rev. A 85, 063821 (2012). https://doi.org/10.1103/PhysRevA.85.063821

    Article  ADS  Google Scholar 

  9. A.Y. Dmitriev, R. Shaikhaidarov, V.N. Antonov, T. Höigl-Decrinis, O.V. Astafiev, Nat. Commun. 8, 1352 (2017). https://doi.org/10.1038/s41467-017-01471-x

    Article  ADS  Google Scholar 

  10. J.H. Li, R. Yu, C.L. Ding, Y. Wu, Opt. Express 22, 15024 (2014). https://doi.org/10.1364/OE.22.015024

    Article  ADS  Google Scholar 

  11. X.Y. Hao, J. Wu, Y. Wang, J. Opt. Soc. Am. B 29, 420 (2012). https://doi.org/10.1364/JOSAB.29.000420

    Article  ADS  Google Scholar 

  12. X.Y. Hao, J.H. Li, X.X. Yang, Opt. Commun. 282, 3339 (2009). https://doi.org/10.1016/j.optcom.2009.05.015

    Article  ADS  Google Scholar 

  13. Y.P. Zhang, A.W. Brown, M. **ao, Phys. Rev. A 74, 053813 (2006). https://doi.org/10.1103/PhysRevA.74.053813

    Article  ADS  Google Scholar 

  14. Y.P. Zhang, Z.Q. Nie, H.B. Zheng, C.B. Li, J.P. Song, M. **ao, Phys. Rev. A 80, 013835 (2009). https://doi.org/10.1103/PhysRevA.80.013835

    Article  ADS  Google Scholar 

  15. C. Becker, M. Wegener, S. Wong, G. von Freymann, Appl. Phys. Lett. 89, 131122 (2006). https://doi.org/10.1063/1.2358295

    Article  ADS  Google Scholar 

  16. L. Allen, M.W. Beijersbergen, R.J.C. Spreeuw, J.P. Woerdman, Phys. Rev. A 45, 8185 (1992). https://doi.org/10.1103/PhysRevA.45.8185

    Article  ADS  Google Scholar 

  17. M. Padgett, J. Courtial, L. Allen, Phys. Today 57, 35 (2004). https://doi.org/10.1063/1.1768672

    Article  ADS  Google Scholar 

  18. A.M. Yao, M.J. Padgett, Adv. Opt. Photon. 3, 161 (2011). https://doi.org/10.1364/AOP.3.000161

    Article  Google Scholar 

  19. A. Vijayakumar, C. Rosales-Guzmán, M.R. Rai, J. Rosen, O.V. Minin, I.V. Minin, A. Forbes, Opt. Express 27, 6459 (2019). https://doi.org/10.1364/OE.27.006459

    Article  ADS  Google Scholar 

  20. Q.H. Wang, P.N. Ni, Y.Y. **e, Q. Kan, P.P. Chen, P. Fu, J. Deng, T.L. **, H.D. Chen, H.W. Howard Lee, C. Xu, P. Genevet, Laser Photon. Rev. 15, 2000385 (2021). https://doi.org/10.1002/lpor.202000385

    Article  ADS  Google Scholar 

  21. Y. Hong, Z.P. Wang, D.S. Ding, B.L. Yu, Opt. Express 27, 29863 (2019). https://doi.org/10.1364/OE.27.029863

    Article  ADS  Google Scholar 

  22. J. Qiu, Z.P. Wang, D.S. Ding, Z.X. Huang, B.L. Yu, Phys. Rev. A 102, 033516 (2020). https://doi.org/10.1103/PhysRevA.102.033516

  23. Y.F. Zhang, Z.P. Wang, J. Qiu, Y. Hong, B.L. Yu, Appl. Phys. Lett. 115, 171905 (2019). https://doi.org/10.1063/1.5121275

  24. Z.P. Wang, Y.F. Zhang, E. Paspalakis, B.L. Yu, Phys. Rev. A 102, 063509 (2020). https://doi.org/10.1103/PhysRevA.102.063509

    Article  ADS  Google Scholar 

  25. J. Qiu, Z.P. Wang, D.S. Ding, W.B. Li, B.L. Yu, Opt. Express 28, 2975 (2020). https://doi.org/10.1364/OE.379245

    Article  ADS  Google Scholar 

  26. C. Yu, Z.P. Wang, Phys. Rev. A 103, 013518 (2021). https://doi.org/10.1103/PhysRevA.103.013518

    Article  ADS  Google Scholar 

  27. Rahmatullah, M. Abbas, Ziauddin, S. Qamar, Phys. Rev. A 101, 023821 (2020). https://doi.org/10.1103/PhysRevA.101.023821

    Article  ADS  Google Scholar 

  28. H.R. Hamedi, J. Ruseckas, G. Juzeliūnas, Phys. Rev. A 98, 013840 (2018). https://doi.org/10.1103/PhysRevA.98.013840

    Article  ADS  Google Scholar 

  29. H.R. Hamedi, J. Ruseckas, E. Paspalakis, G. Juzeliūnas, Phys. Rev. A 99, 033812 (2019). https://doi.org/10.1103/PhysRevA.99.033812

    Article  ADS  Google Scholar 

  30. H.R. Hamedi, J. Ruseckas, E. Paspalakis, G. Juzeliūnas, Phys. Rev. A 101, 063828 (2020). https://doi.org/10.1103/PhysRevA.101.063828

    Article  ADS  Google Scholar 

  31. H.R. Hamedi, G. Žlabys, V. Ahufinger, T. Halfmann, J. Ruseckas, G. Juzeliūnas, Opt. Express 30, 13915 (2022). https://doi.org/10.1364/OE.447397

    Article  ADS  Google Scholar 

  32. H.R. Hamedi, V. Kudriašov, J. Ruseckas, G. Juzeliūnas, Opt. Express 26, 28249 (2018). https://doi.org/10.1364/OE.26.028249

    Article  ADS  Google Scholar 

  33. H.R. Hamedi, V. Kudriašov, N. Jia, J. Qian, G. Juzeliūnas, Opt. Lett. 46, 4204 (2021). https://doi.org/10.1364/OL.427000

    Article  ADS  Google Scholar 

  34. S.H. Asadpour, E. Paspalakis, H.R. Hamedi, Phys. Rev. A 103, 063705 (2021). https://doi.org/10.1103/PhysRevA.103.063705

    Article  ADS  Google Scholar 

  35. J.H. Li, R. Yu, Y. Wu, Phys. Rev. A 92, 053837 (2015). https://doi.org/10.1103/PhysRevA.92.053837

    Article  ADS  Google Scholar 

  36. J.H. Li, R. Yu, C.L. Ding, Y. Wu, Phys. Rev. A 93, 023814 (2016). https://doi.org/10.1103/PhysRevA.93.023814

    Article  ADS  Google Scholar 

  37. S.H. Asadpour, H.R. Hamedi, T. Kirova, E. Paspalakis, Phys. Rev. A 105, 043709 (2022). https://doi.org/10.1103/PhysRevA.105.043709

    Article  ADS  Google Scholar 

  38. D. Zhang, H.M. **a, K. Wang, Y.Q. Li, Z.Y. Sun, M. Wang, J. Phys. B: At. Mol. Opt. Phys. 55, 175402 (2022) https://iopscience.iop.org/article/10.1088/1361-6455/ac8386

  39. D. Zhang, Y.Q. Li, H.M. **a, Z.Y. Sun, M. Wang, Opt. Commun. 508, 127791 (2022). https://doi.org/10.1016/j.optcom.2021.127791

    Article  Google Scholar 

  40. J.H. Poynting, Proc. R. Soc. Lond. A Ser. A 82, 560 (1909). https://doi.org/10.1098/rspa.1909.0060

    Article  ADS  Google Scholar 

  41. Y.T. Tang, K.F. Li, X.C. Zhang, J.H. Deng, G.X. Li, E. Brasselet, Nat. Photon. 14, 658 (2020). https://doi.org/10.1038/s41566-020-0691-0

    Article  ADS  Google Scholar 

  42. K. Sun, C.L. Qu, C.W. Zhang, Phys. Rev. A 91, 063627 (2015). https://doi.org/10.1103/PhysRevA.91.063627

    Article  ADS  Google Scholar 

  43. C.L. Ding, J.H. Li, X. Dai, R.-B. **, X.Y. Hao, Opt. Express 29, 36840 (2021). https://doi.org/10.1364/OE.440690

  44. U. Khadka, Y.P. Zhang, M. **ao, Phys. Rev. A 81, 023830 (2010). https://doi.org/10.1103/PhysRevA.81.023830

    Article  ADS  Google Scholar 

  45. M.O. Scully, M.S. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, 1999)

    Google Scholar 

  46. Y. Wu, X.X. Yang, Phys. Rev. A 70, 053818 (2004). https://doi.org/10.1103/PhysRevA.70.053818

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (NSFC) under Grant Nos.  11705131, 12074299, 91836102, and 11704290.

Author information

Authors and Affiliations

Authors

Contributions

CP and CD made the calculations and wrote the main manuscript text. CP, SZ, and HW performed all the numerical simulations and plotted the figures. CD and RJ participated in the discussion and revision. All authors contributed to the interpretation of the work and the writing of the manuscript.

Corresponding authors

Correspondence to Chunling Ding or Rui-Bo **.

Ethics declarations

Conflict of interest

The authors have declared that no competing interests exist.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, C., Zheng, S., Wang, H. et al. Manipulation of double-four-wave mixing in an atomic system under vortex-beam illumination. Eur. Phys. J. D 77, 112 (2023). https://doi.org/10.1140/epjd/s10053-023-00701-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-023-00701-w

Navigation