Log in

Physisorption kinetics of electrons at plasma boundaries

  • Colloquia
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Plasma-boundaries floating in an ionized gas are usually negatively charged. They accumulate electrons more efficiently than ions leading to the formation of a quasi-stationary electron film at the boundaries. We propose to interpret the build-up of surface charges at inert plasma boundaries, where other surface modifications, for instance, implantation of particles and reconstruction or destruction of the surface due to impact of high energy particles can be neglected, as a physisorption process in front of the wall. The electron sticking coefficient se and the electron desorption time τe, which play an important role in determining the quasi-stationary surface charge, and about which little is empirically and theoretically known, can then be calculated from microscopic models for the electron-wall interaction. Irrespective of the sophistication of the models, the static part of the electron-wall interaction determines the binding energy of the electron, whereas inelastic processes at the wall determine se and τe. As an illustration, we calculate se and τe for a metal, using the simplest model in which the static part of the electron-metal interaction is approximated by the classical image potential. Assuming electrons from the plasma to loose (gain) energy at the surface by creating (annihilating) electron-hole pairs in the metal, which is treated as a jellium half-space with an infinitely high workfunction, we obtain se≈10-4 and τe≈10-2 s. The product seτe≈10-6 s has the order of magnitude expected from our earlier results for the charge of dust particles in a plasma but individually se is unexpectedly small and τe is somewhat large. The former is a consequence of the small matrix elements occurring in the simple model while the latter is due to the large binding energy of the electron. More sophisticated theoretical investigations, but also experimental support, are clearly needed because if se is indeed as small as our exploratory calculation suggests, it would have severe consequences for the understanding of the formation of surface charges at plasma boundaries. To identify what we believe are key issues of the electronic microphysics at inert plasma boundaries and to inspire other groups to join us on our journey is the purpose of this colloquial presentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • R.N. Franklin, J. Phys. D: Appl. Phys. 36, R309 (2006)

  • K.-U. Riemann, J. Phys. D: Appl. Phys. 24, 493 (1991)

    Google Scholar 

  • H.G. Purwins, AIP Conf. Proc. 993, 67 (2008)

    Google Scholar 

  • H.G. Purwins, H.U. Bodeker, A.W. Liehr, Experimental Chaos 742, 289 (2004)

    Google Scholar 

  • M.A. Lieberman, A.J. Lichtenberg, Principles of plasma discharges and materials processing (Wiley-Interscience, New York, 2005)

  • M.W. Cole, Rev. Mod. Phys. 46, 451 (1974)

    Google Scholar 

  • T. Ando, A.B. Fowler, F. Stern, Rev. Mod. Phys. 54, 437 (1982)

    Google Scholar 

  • M. Rapp, F.-J. Luebken, J. Atm. Solar-Terr. Phys. 63, 759 (2001)

    Google Scholar 

  • H.B. Garrett, A.C. Whittlesey, IEEE Trans. Plasma Sci. 28, 2017 (2000)

  • E.C. Whipple, Rep. Prog. Phys. 44, 1197 (1981)

    Google Scholar 

  • I. Mann, Adv. Space Res. 41, 160 (2008)

  • M. Horányi, Annu. Rev. Astron. Astrophys. 34, 383 (1996)

    Google Scholar 

  • O. Ishihara, J. Phys. D: Appl. Phys. 40, R121 (2007)

  • V.E. Fortov, A.V. Ivlev, S.A. Khrapak, A.G. Khrapak, G.E. Morfill, Phys. Rep. 421, 1 (2005)

    Google Scholar 

  • S.A. Khrapak, S.V. Ratynskaia, A.V. Zobnin, A.D. Usachev, V.V. Yaroshenko, M.H. Thoma, M. Kretschmer, H. Höfner, G.E. Morfill, O.F. Petrov, V.E. Fortov, Phys. Rev. E 72, 016406 (2005)

    Google Scholar 

  • A.A. Samarian, S.V. Vladimirov, Phys. Rev. E 67, 066404 (2003)

    Google Scholar 

  • E.B. Tomme, B.M. Annaratone, J.E. Allen, Plasma Sources Sci. Technol. 9, 87 (2000)

    Google Scholar 

  • E.B. Tomme, D.A. Law, B.M. Annaratone, J.E. Allen, Phys. Rev. Lett. 85, 2518 (2000)

    Google Scholar 

  • B. Walch, M. Horányi, S. Robertson, Phys. Rev. Lett. 75, 838 (1995)

    Google Scholar 

  • Y.B. Golubovskii, V.A. Maiorov, J. Behnke, J.F. Behnke, J. Phys. D: Appl. Phys. 35, 751 (2002)

    Google Scholar 

  • U. Kogelschatz, Plasma Chem. Plasma Process. 23, 1 (2003)

  • M. Li, C. Li, H. Zhan, J. Xu, Proceedings of the XV International Conference on Gas Discharges and their Applications (2004)

  • L. Stollenwerk, S. Amiranashvili, J.-P. Boeuf, H.-G. Purwins, Phys. Rev. Lett. 96, 255001 (2006)

    Google Scholar 

  • L. Stollenwerk, J.G. Laven, H.-G. Purwins, Phys. Rev. Lett. 98, 255001 (2007)

    Google Scholar 

  • M. Li, C. Li, H. Zhan, J. Xu, Appl. Phys. Lett. 92, 031503 (2008)

    Google Scholar 

  • K.G. Emeleus, J.R.M. Coulter, Int. J. Electron. 62, 225 (1987)

    Google Scholar 

  • J.F. Behnke, T. Bindemann, H. Deutsch, K. Becker, Contrib. Plasma Phys. 37, 345 (1997)

    Google Scholar 

  • H. Kersten, H. Deutsch, G.M.W. Kroesen, Int. J. Mass Spectrom. 233, 51 (2004)

    Google Scholar 

  • F.X. Bronold, H. Fehske, H. Kersten, H. Deutsch, Phys. Rev. Lett. 101, 175002 (2008)

    Google Scholar 

  • J.E. Lennard-Jones, A.F. Devonshire, Proc. Roy. Soc. (London) A 156, 6 (1936)

    Google Scholar 

  • B. Bendow, S.-C. Ying, Phys. Rev. B 7, 622 (1973)

    Google Scholar 

  • Z.W. Gortel, H.J. Kreuzer, R. Teshima, Phys. Rev. B 22, 5655 (1980)

    Google Scholar 

  • Z.W. Gortel, H.J. Kreuzer, R. Teshima, Phys. Rev. B 22, 512 (1980)

    Google Scholar 

  • H.J. Kreuzer, R. Teshima, Phys. Rev. B 24, 4470 (1981)

    Google Scholar 

  • W. Brenig, Z. Phys. B 48, 127 (1982)

    Google Scholar 

  • H.J. Kreuzer, Z.W. Gortel, Physisorption Kinetics (Springer Verlag, Berlin, 1986)

  • D. Neilson, R.M. Nieminen, J. Szymański, Phys. Rev. B 33, 1567 (1986)

    Google Scholar 

  • Z.W. Gortel, J. Szymanski, Phys. Rev. B 43, 1919 (1991)

  • W. Brenig, R. Russ, Surf. Sci. 278, 397 (1992)

    Google Scholar 

  • A.B. Walker, K.O. Jensen, J. Szymański, D. Neilson, Phys. Rev. B 46, 1687 (1992)

    Google Scholar 

  • R. Ray, G.D. Mahan, Phys. Lett. 42, A 301 (1972)

  • E. Evans, D.L. Mills, Phys. Rev. B 8, 4004 (1973)

    Google Scholar 

  • G. Barton, J. Phys. C: Solid State Phys. 14, 3975 (1981)

    Google Scholar 

  • V. Dose, W. Altmann, A. Goldmann, U. Kolac, J. Rogozik, Phys. Rev. Lett. 52, 1919 (1984)

    Google Scholar 

  • D. Straub, F.J. Himpsel, Phys. Rev. Lett. 52, 1922 (1984)

  • D.P. Woodruff, S.L. Hulbert, P.D. Johnson, N.V. Smith, Phys. Rev. B 31, (RC)4046 (1985)

  • W. Jacob, V. Dose, U. Kolac, T. Fauster, Z. Phys. B 63, 459 (1986)

    Google Scholar 

  • P.M. Echenique, J.B. Pendry, Progr. Surf. Sci. 32, 111 (1990)

    Google Scholar 

  • A. Elmahboubi, Y. Lépine, Surf. Sci. 303, 409 (1994)

    Google Scholar 

  • T. Fauster, Appl. Phys. A 59, (1994) 479.

    Google Scholar 

  • A. Elmahboubi, Y. Lépine, Solid State Commun. 94, 655 (1995)

    Google Scholar 

  • U. Höfer, I.L. Shumay, C. Reuss, U. Thomann, W. Wallauer, T. Fauster, Science 277, 1480 (1997)

    Google Scholar 

  • E.V. Chulkov, V.M. Silkin, P.M. Echenique, Surf. Sci. 437, 330 (1999)

    Google Scholar 

  • U. Höfer, Appl. Phys. B 68, 383 (1999)

    Google Scholar 

  • M.G. Vergniory, J.M. Pitarke, P.M. Echenique, Phys. Rev. B 76, 245416 (2007)

    Google Scholar 

  • M. Lampe, V. Gavrishchaka, G. Ganguli, G. Joyce, Phys. Rev. Lett. 86, 5278 (2001)

    Google Scholar 

  • M. Lampe, R. Goswami, Z. Sternovsky, S. Robertson, V. Gavrishchaka, G. Ganguli, G. Joyce, Phys. Plasmas 10, 1500 (2003)

    Google Scholar 

  • Z. Sternovsky, M. Lampe, S. Robertson, IEEE Trans. Plasma Sci. 32, 632 (2004)

    Google Scholar 

  • I.B. Bernstein, I.N. Rabinowitz, Phys. Fluids 2, 112 (1959)

    Google Scholar 

  • J.G. Laframboise, L.W. Parker, Phys. Fluids 16, 629 (1973)

    Google Scholar 

  • J.E. Daugherty, R.K. Porteous, M.D. Kilgore, D.B. Graves, J. Appl. Phys. 72, 3934 (1992)

    Google Scholar 

  • D.D. Tskhakaya, N.L. Tsintsadze, P.K. Shukla, L. Stenflo, Phys. Scr. 64, 366 (2001)

    Google Scholar 

  • D.D. Tskhakaya, P.K. Shukla, L. Stenflo, Phys. Plasmas 8, 5333 (2001)

  • C.J.F. Boettcher, Theory of electric polarization (Elsevier Publishing Company, Amsterdam, 1952)

  • B.T. Draine, B. Sutin, Astrophys. J. 320, 803 (1987)

    Google Scholar 

  • Y.M. Vilk, A.E. Ruckenstein, Phys. Rev. B 48, 11196 (1993)

    Google Scholar 

  • M.-C. Desjonqueres, D. Spanjaard, Concepts of surface physics (Springer Verlag, Berlin, 1996)

  • M.J. Richardson, Phys. Rev. A 8, 781 (1973)

    Google Scholar 

  • V.C. Liu, Space Sci. Rev. 9, 423 (1969)

    Google Scholar 

  • G.H.P.M. Swinkels, H. Kersten, H. Deutsch, G.M.W. Kroesen, J. Appl. Phys. 88, 1747 (2000)

    Google Scholar 

  • S.J. Choi, M.J. Kushner, IEEE Trans. Plasma Sci. 22, 138 (1994)

    Google Scholar 

  • H. Maurer, R. Basner, H. Kersten, Rev. Sci. Instrum. 79, 093508 (2008)

    Google Scholar 

  • M. Heinrichsmeier, A. Fleszar, W. Hanke, A.G. Eguiluz, Phys. Rev. B 57, 14974 (1998)

    Google Scholar 

  • N.W. Ashcroft, N.D. Mermin, Solid State Physics (Holt, Rinehart and Winston, New York, 1976)

  • I. Kuscer, Surf. Sci. 25, 225 (1971)

    Google Scholar 

  • T. Umebayashi, T. Nakano, Publ. Astron. Soc. Jpn 32, 405 (1980)

    Google Scholar 

  • D. Hollenbach, E.E. Salpeter, J. Chem. Phys. 53, 79 (1970)

    Google Scholar 

  • J. Maultsch, S. Reich, C. Thomsen, H. Requardt, P. Ordejón, Phys. Rev. Lett. 92, 075501 (2004)

    Google Scholar 

  • M. Abramowitz, I.A. Stegun, Handbook of mathematical functions, edited by M. Abramowitz, I.A. Stegun (Dover Publications, Inc., New York, 1973)

  • I.S. Gradstein, I.M. Ryshik, Tables of series, products, and integrals (Verlag Harri Deutsch, Thun and Frankfurt/Main, 1981), Vol. 2

  • K. Unger, Phys. Stat. Sol. B 149, K141 (1988)

  • F.W.J. Olver, Aysmptotics and special functions (Academic Press, New York, 1974)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. X. Bronold.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bronold, F., Deutsch, H. & Fehske, H. Physisorption kinetics of electrons at plasma boundaries. Eur. Phys. J. D 54, 519–544 (2009). https://doi.org/10.1140/epjd/e2009-00213-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2009-00213-7

PACS

Navigation