Log in

Electronic and elastic properties cubic of LiBH4 and Li(BH)3 as host materials for hydrogen storage

  • Regular Article - Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Due to growing interest to explore and predict potential hydrogen storage materials by adopting theoretical and greatly functional software, research on lightweight materials has taken great attention. From this perspective, this study focuses on investigating electronic, elastic, and anisotropic properties of cubic LiBH4 and Li(BH)3 using first principles calculations for the first time. A comprehensive investigation has been carried out to reveal materials’ electronic, elastic, hardness, and anisotropic behaviour. The calculations exhibit that both LiBH4 and Li(BH)3 has negative formation energies as − 0.268 eV/atom and − 0.187 eV/atom, respectively which indicate synthesisability and thermodynamic stability. Elastic constants of materials are used to predict mechanical stabilities based on the well-known Born stability criteria. It is seen that both materials are mechanically stable. The electronic band structures indicate band gaps between valence and conduction band as 6 eV for LiBH4 and 4.58 eV for Li(BH)3, showing non-metallic nature of both materials. The negative Cauchy pressures and the B/G ratio less than 1.75 indicate brittleness of both materials. The anisotropy factors of both materials display that these materials are anisotropic due to a deviation from unity. The hydrogen desorption temperature is also estimated as \(\sim\)198.2 K for LiBH4 and \(\sim\)138.6 K for Li(BH)3.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data are available from the corresponding author on reasonable request.

References

  1. M. Hermesmann, T.E. Müller, Prog. Energy Combust. Sci. 90, 100996 (2022)

    Article  Google Scholar 

  2. A. Tekin, R. Caputo, A. Züttel, Phys. Rev. Lett. 104(21), 215501 (2010)

    Article  ADS  PubMed  Google Scholar 

  3. S. Li, X. Ju, C. Wan, Comput. Mater. Sci. 81, 378–385 (2014)

    Article  CAS  Google Scholar 

  4. R.M.A. Khalil, M.I. Hussain, F. Hussain, A.M. Rana, G. Murtaza, M. Shakeel, H.M. Asif Javed, Int. J. Quantum Chem. 121(4), e26444 (2021)

    Article  CAS  Google Scholar 

  5. Y. Bouhadda, S. Djellab, M. Bououdina, N. Fenineche, Y. Boudouma, J. Alloys Compd. 534, 20–24 (2012)

    Article  CAS  Google Scholar 

  6. H. Benzidi, M. Garara, M. Lakhal, M. Abdalaoui, A. Benyoussef, A. Elkenz, M. Louilidi, M. Hamedoun, O. Mounkachi, Int. J. Hydrogen Energy 43(13), 6625–6631 (2018)

    Article  CAS  Google Scholar 

  7. X.B. Yu, D.M. Grant, G.S. Walker, J. Phys. Chem. C 113(41), 17945–17949 (2009)

    Article  CAS  Google Scholar 

  8. X. B. Yu, Z. Wu, Q. R. Chen, Z. L. Li, B. C. Weng and T. S. Huang, Appl. Phys. Lett. 90(3) (2007).

  9. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, J. Phys. Condens. Matter 21(39), 395502 (2009)

    Article  PubMed  Google Scholar 

  10. J.P. Perdew, K. Burke, M. Ernzerhof, J Phys. Rev. Lett. 77(18), 3865 (1996)

    Article  ADS  CAS  Google Scholar 

  11. M. Methfessel, A. Paxton, J. Phys. Rev. B 40(6), 3616 (1989)

    Article  ADS  CAS  Google Scholar 

  12. M.I. Hussain, R.M. Arif Khalil, F. Hussain, A.M. Rana, G. Murtaza, M. Imran, Optik 219, 165027 (2020)

    Article  ADS  CAS  Google Scholar 

  13. M.I. Hussain, R.M.A. Khalil, Mater. Sci. Semicond. Process. 152, 107050 (2022)

    Article  CAS  Google Scholar 

  14. M.I. Hussain, R.M.A. Khalil, F. Hussain, 9(5), 2001026 (2021).

  15. A.H. Reshak, M.Y. Shalaginov, Y. Saeed, I.V. Kityk, S. Auluck, J. Phys. Chem. B 115(12), 2836–2841 (2011)

    Article  CAS  PubMed  Google Scholar 

  16. S. Benlamari, H. Bendjeddou, R. Boulechfar, S. Amara Korba, H. Meradji, R. Ahmed, S. Ghemid, R. Khenata, S. Bin Omran, Chin. Phys. B 27(3), 037104 (2018)

    Article  ADS  Google Scholar 

  17. S. Al, Int. J. Hydrogen Energy 44(3), 1727–1734 (2019)

    Article  CAS  Google Scholar 

  18. P. Li, J. Zhang, S. Ma, Y. Zhang, H. **, S. Mao, MoSim 45(9), 752–758 (2019)

    CAS  Google Scholar 

  19. S.F. Pugh, Philos. Mag. J. Sci. 45(367), 823–843 (1954)

    Article  CAS  Google Scholar 

  20. H. Ziani, A. Gueddim, N. Bouarissa, L. Gacem, Mater. Sci. Eng. B 269, 115154 (2021)

    Article  CAS  Google Scholar 

  21. H. Ziani, A. Gueddim, N. Bouarissa, J. Mol. Model. 29(2), 59 (2023)

    Article  CAS  PubMed  Google Scholar 

  22. N. Miao, B. Sa, J. Zhou, Z. Sun, Comput. Mater. Sci. 50(4), 1559–1566 (2011)

    Article  CAS  Google Scholar 

  23. L. Liu, X. Wu, R. Wang, X. Nie, Y. He, X. Zou, Crystals 7(4), 111 (2017)

    Article  Google Scholar 

  24. A. Gueddim, S. Zerroug, N. Bouarissa, N. Fakroun, ChJPh 55(4), 1423–1431 (2017)

    ADS  CAS  Google Scholar 

  25. V.V. Bannikov, I.R. Shein, A.L. Ivanovskii, Phys. Status Solidi (RRL) Rapid Res. Lett. 1(3), 89–91 (2007)

    Article  ADS  CAS  Google Scholar 

  26. A. Gencer, G. Surucu, S. Al, Int. J. Hydrogen Energy 44(23), 11930–11938 (2019)

    Article  CAS  Google Scholar 

  27. S. Al, in Zeitschrift für Naturforschung A, Vol. 74, (2019), p. 1023.

  28. N. Miao, B. Sa, J. Zhou, Z. Sun, presented at the Computational Materials Science (2011) (Unpublished).

  29. H. Chen, L. Yang, J. Long, Superlattices Microstruct. 79, 156–165 (2015)

    Article  CAS  Google Scholar 

  30. T. Özer, J. Can. J. Phys. 98(4), 357–363 (2020)

    Article  ADS  Google Scholar 

  31. D.P. Broom, Hydrogen Storage Materials; The Characterisation of Their Storage Properties, 1st edn. (Springer, London, 2011)

    Book  Google Scholar 

  32. D. Pukazhselvan, V. Kumar, S.K. Singh, Nano Energy 1(4), 566–589 (2012)

    Article  CAS  Google Scholar 

  33. Q. Zeng, K. Su, L. Zhang, Y. Xu, L. Cheng, X. Yan, J. Phys. Chem. Ref. Data 35(3), 1385–1390 (2006)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

There is no funding received for this study.

Author information

Authors and Affiliations

Authors

Contributions

All authors have contributed equally to the preparation of the manuscript.

Corresponding author

Correspondence to Selgin Al.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Örnek, O., Al, S., İyigor, A. et al. Electronic and elastic properties cubic of LiBH4 and Li(BH)3 as host materials for hydrogen storage. Eur. Phys. J. B 97, 9 (2024). https://doi.org/10.1140/epjb/s10051-024-00648-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-024-00648-w

Navigation