Log in

Two-dimensional silicether as an excellent anode material for magnesium-ion battery with high capacity and fast diffusion ability

  • Regular Article - Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Exploring the excellent anode materials for metal-ion batteries is a hot spot in the energy storage field. Based on first-principles calculations, we propose two-dimensional (2D) silicether monolayer to be an outstanding anode for magnesium-ion batteries (MIBs). The relatively large adsorption energy (1.00 eV) for single Mg atom indicates good structural stability. Silicether could undergo the transition from semiconductor to metal even at a low Mg concentration (0.0625). Furthermore, silicether exhibits the low diffusion barrier (0.21 eV), the maximum storage capacity of 744 mAh g−1, and a suitable open-circuit voltage (0.69–0.84 eV). A slight deformation and volume changes during full intercalation of Mg reveal a favorable cyclability. The above results suggest that silicether could be a promising candidate for MIBs.

Graphical abstract

Silicether as a new anode material for MIBs: fast ion mobility, high storage capacity,and appropriate OCV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability statement

The data that support the findings of this study are available from the corresponding author [X. Y. Ye], upon reasonable request.

References

  1. N. Jiao, S. Evans, J. Ind. Prod. Eng. 33, 348–354 (2016)

    Google Scholar 

  2. H. Chen, K. Shen, X. Hou et al., Appl. Surf. Sci. 470, 496–506 (2019)

    ADS  Google Scholar 

  3. S.W. Liu, W.H. Xu, C.H. Ding et al., Appl. Surf. Sci. 494, 94–100 (2019)

    ADS  Google Scholar 

  4. J.B. Goodenough, K.S. Park, J. Am. Chem. Soc. 135, 1167–1176 (2013)

    Google Scholar 

  5. X.Z. Zhu, J. Xu, Y.P. Luo et al., J. Mater. Chem. A 7, 6522–6532 (2019)

    Google Scholar 

  6. Q.F. Fu, R.J. Li, X.Z. Zhu et al., J. Mater. Chem. A 7, 19862–19871 (2019)

    Google Scholar 

  7. L. Wang, J. Ma, C. Wang et al., Adv. Sci. 6, 1900355 (2019)

    Google Scholar 

  8. X. Zhang, R.J. Lv, W. Tang et al., Adv. Funct. Mater. 30, 2004187 (2020)

    Google Scholar 

  9. P. Saha, M.K. Datta, O.I. Velikokhatnyi et al., Prog. Mater. Sci. 66, 1–86 (2014)

    Google Scholar 

  10. H. Tian, T. Gao, X. Li et al., Nat. Commun. 8, 1–8 (2017)

    Google Scholar 

  11. Y. Dong, H.D. Shi, Z.S. Wu, Adv. Funct. Mater. 30, 2000706 (2020)

    Google Scholar 

  12. J. Xu, G.C. Jia, W.J. Mai et al., Adv. Mater. Interfaces 3, 1600430 (2016)

    Google Scholar 

  13. R. Bhuvaneswari, V. Nagarajan, R.J.M.R.E. Chandiramouli, Mater. Res. Express 6, 035504 (2018)

    ADS  Google Scholar 

  14. W.F. Li, Y. Yang, G. Zhang et al., Nano Lett 15, 1691–1697 (2015)

    ADS  Google Scholar 

  15. D.W. Su, S.X. Dou, G.X. Wang, Adv. Energy Mater. 5, 1401205 (2014)

    Google Scholar 

  16. Q.L. Sun, Y. Dai, Y. Ma et al., J. Phys. Chem. Lett. 7, 937–943 (2016)

    Google Scholar 

  17. D. Cakir, C. Sevik, O. Gülseren et al., J. Mater. Chem. A 4, 6029–6035 (2016)

    Google Scholar 

  18. D. Er, E. Detsi, H. Kumar et al., ACS Energy Lett. 1, 638–645 (2016)

    Google Scholar 

  19. W.Z. Chen, Y.J. Qu, L.M. Yao et al., J. Mater. Chem. A 6, 8021–8029 (2018)

    Google Scholar 

  20. X.J. Ye, G.L. Zhu, J. Liu et al., J. Phys. Chem. C 123, 15777–15786 (2019)

    Google Scholar 

  21. X.Y. Deng, X.F. Chen, Y. Huang et al., J. Phys. Chem. C 123, 4721–4728 (2019)

    Google Scholar 

  22. S.N. Li, J.B. Liu, B.X. Liu, J. Power Sources 320, 322–331 (2016)

    ADS  Google Scholar 

  23. I. Basile-Doelsch, J. Geochem. Explor. 88, 252–256 (2006)

    Google Scholar 

  24. H. Li, J.H. Hou, D.Y. Jiang, J. Electron. Mater. 49, 4180–4185 (2020)

    ADS  Google Scholar 

  25. M.J. Sun, X.R. Cao, Z.X. Cao, Nanoscale 10, 10450–10458 (2018)

    Google Scholar 

  26. H.R. Jiang, T. Zhao, Y. Ren et al., Sci. Bull. 62, 572–578 (2017)

    Google Scholar 

  27. G.L. Zhu, X.J. Ye, C.S. Liu et al., Nanoscale Adv. 2, 2835–2841 (2020)

    ADS  Google Scholar 

  28. R.G. Zhang, X.Q. Yu, K.W. Nam et al., Electrochem. Commun. 23, 110–113 (2012)

    Google Scholar 

  29. R.Q. Li, Y.F. Liu, H.Q. Deng et al., J. Electrochem. Energy Conv. Stor. 17, 041002 (2020)

    Google Scholar 

  30. P. Panigrahi, S.B. Mishra, T. Hussain et al., ACS Appl. Nano Mater. 3, 9055–9063 (2020)

    Google Scholar 

  31. A.A. Khan, I. Muhammad, R. Ahmad et al., Ionics 27, 4819–4828 (2021)

    Google Scholar 

  32. C. **ao, X.Q. Tang, J.F. Peng et al., Appl. Surf. Sci. 563, 150278 (2021)

    Google Scholar 

  33. S.J. Clark, M.D. Segall, C.J. Pickard et al., Z. Kristallogr. 220, 567–570 (2005)

    Google Scholar 

  34. M.D. Segall, M.J. Probert, P.J. Lindan et al., J. Phys. Condens. Matter. 14, 2717 (2002)

    ADS  Google Scholar 

  35. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    ADS  Google Scholar 

  36. G.-X. Zhang, A. Tkatchenko, J. Paier, H. Appel, M. Scheffler, Phys. Rev. Lett. 107, 245501 (2011)

    ADS  Google Scholar 

  37. G. Henkelman, B.P. Uberuaga et al., J. Chem. Phys. 113, 9901–9904 (2000)

    ADS  Google Scholar 

  38. S. Upadhyay, P. Srivastava, Mater. Chem. Phys. 241, 122381 (2020)

    Google Scholar 

  39. A.D. Becke, K.E. Edgecombe, J. Chem. Phys. 92, 5397–5403 (1990)

    ADS  Google Scholar 

  40. B. Silvi, A. Savin, Nature 371, 683–686 (1994)

    ADS  Google Scholar 

  41. Z. Guo, J. Zhou, C. Si et al., Phys. Chem. Chem. Phys. 17, 15348–15354 (2015)

    Google Scholar 

  42. B.W. Tian, W. Du, L. Chen et al., Appl. Surf. Sci. 527, 146580 (2020)

    Google Scholar 

  43. C. Eames, M.S. Islam, J. Am. Chem. Soc. 136, 16270–16276 (2014)

    Google Scholar 

  44. F. Zhang, T. **g, S.H. Cai et al., Phys. Chem. Chem. Phys. 23, 12731 (2021)

    Google Scholar 

  45. V. Mehta, S. Srivastava, K. Tankeshwar et al., AIP Conf. Proc. 2265, 030658 (2020)

    Google Scholar 

  46. G.R. Vakili-Nezhaad, A.M. Gujarathi, N.A. Rawahi et al., Mater. Chem. Phys. 230, 114–121 (2019)

    Google Scholar 

  47. C. Peng, H.Y. Lyu, L. Wu et al., ACS Appl. Mater. Interfaces 10, 36988–36995 (2018)

    Google Scholar 

  48. W.F. Li, Y.M. Yang, G. Zhang et al., Nano Lett. 15, 1691–1697 (2015)

    ADS  Google Scholar 

  49. P. Panigrahi, S.B. Mishra, T. Hussain et al., ACS Appl. Nano Mater 3, 9055–9063 (2020)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant no. 61974068).

Author information

Authors and Affiliations

Authors

Contributions

RZ conceived the analysis and wrote the paper. X-JY performed the analysis and revised the paper. C-SL revised the paper.

Corresponding authors

Correspondence to **ao-Juan Ye or Chun-Sheng Liu.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, R., Ye, XJ. & Liu, CS. Two-dimensional silicether as an excellent anode material for magnesium-ion battery with high capacity and fast diffusion ability. Eur. Phys. J. B 96, 84 (2023). https://doi.org/10.1140/epjb/s10051-023-00557-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-023-00557-4

Navigation