Log in

Ab initio study on the electromechanical response of Janus transition metal dihalide nanotubes

  • Regular Article - Mesoscopic and Nanoscale Systems
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We study the electronic response of Janus transition metal dihalide (TMH) nanotubes to mechanical deformations using Kohn–Sham density functional theory. Specifically, considering twelve armchair and zigzag Janus TMH nanotubes that are expected to be stable from the phonon analysis of flat monolayer counterparts, we first compute their equilibrium diameters and then determine the variation in bandgap and effective mass of charge carriers with the application of tensile and torsional deformations. We find that the nanotubes undergo a linear and quadratic decrease in bandgap with tensile and shear strain, respectively. In addition, there is a continual increase and decrease in the effective mass of electrons and holes, respectively. We show that for a given strain, the change in bandgap for the armchair nanotubes can be correlated with the transition metal’s in-plane d orbital’s contribution to the projected density of states at the bottom of the conduction band.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability Statement

The data associated with this work can be found in the Supplementary material. This manuscript has data included as electronic supplementary material. The online version of this article contains supplementary material, which is available to authorized users.

References

  1. S. Iijima, Helical microtubules of graphitic carbon. Nature 354(6348), 56–58 (1991)

    ADS  Google Scholar 

  2. R. Tenne, Advances in the synthesis of inorganic nanotubes and fullerene-like nanoparticles. Angewandte Chemie Int. Edn. 42(42), 5124–5132 (2003)

    Google Scholar 

  3. C.N.R. Rao, M. Nath, Inorganic nanotubes, in Advances In Chemistry: A Selection of CNR Rao’s Publications (1994–2003) (World Scientific, 2003). pp. 310–333

  4. M. Serra, R. Arenal, R. Tenne, An overview of the recent advances in inorganic nanotubes. Nanoscale 11(17), 8073–8090 (2019)

    Google Scholar 

  5. S. Ghosh, A.S. Banerjee, P. Suryanarayana, Symmetry-adapted real-space density functional theory for cylindrical geometries: application to large group-IV nanotubes. Phys. Rev. B 100(12), 125143 (2019)

    ADS  Google Scholar 

  6. D.-B. Zhang, E. Akatyeva, T. Dumitrică, Helical bn and zno nanotubes with intrinsic twisting: an objective molecular dynamics study. Phys. Rev. B 84(11), 115431 (2011)

    ADS  Google Scholar 

  7. G.Y. Guo, J.C. Lin, Systematic ab initio study of the optical properties of BN nanotubes. Phys. Rev. B 71(16), 165402 (2005)

    ADS  Google Scholar 

  8. J.-F. Jia, H.-S. Wu, H. Jiao, The structure and electronic property of BN nanotube. Physica B 381(1–2), 90–95 (2006)

    ADS  Google Scholar 

  9. K.H. An, Y.H. Lee, Electronic-structure engineering of carbon nanotubes. NANO 1(02), 115–138 (2006)

    Google Scholar 

  10. M.P. Anantram, F. Leonard, Physics of carbon nanotube electronic devices. Rep. Prog. Phys. 69(3), 507 (2006)

    ADS  Google Scholar 

  11. H. Wang, N. Ding, T. Jiang, X. Zhao, W. Liu, F. Zaïri, Investigation on mechanical and electronic properties of graphene-doped boron nitride nanotubes. Mater. Res. Expr 6(11), 1150c5 (2019)

    Google Scholar 

  12. V. Parashar, C.P. Durand, B. Hao, R.G. Amorim, R. Pandey, B. Tiwari, D. Zhang, Y. Liu, A.-P. Li, Y.K. Yap, Switching behaviors of graphene-boron nitride nanotube heterojunctions. Sci. Rep. 5(1), 1–6 (2015)

    Google Scholar 

  13. B. Akdim, R. Pachter, Bandgap Tuning of a (6, 6) Boron Nitride Nanotube by Analyte Physisorption and Application of a Transverse Electric Field: A DFT Study. IEEE Trans. Nanotechnol. 10(5), 1089–1092 (2011)

    ADS  Google Scholar 

  14. L.-G. Tien, C.-H. Tsai, F.-Y. Li, M.-H. Lee, Band-gap modification of defective carbon nanotubes under a transverse electric field. Phys. Rev. B 72(24), 245417 (2005)

    ADS  Google Scholar 

  15. C.-W. Chen, M.-H. Lee, S.J. Clark, Band gap modification of single-walled carbon nanotube and boron nitride nanotube under a transverse electric field. Nanotechnology 15(12), 1837 (2004)

    ADS  Google Scholar 

  16. G. Fedorov, P. Barbara, D. Smirnov, D. Jiménez, Stephan Roche, Tuning the band gap of semiconducting carbon nanotube by an axial magnetic field. Appl. Phys. Lett. 96(13), 132101 (2010)

    ADS  Google Scholar 

  17. Y. Li, W. Liu, H. Xu, H. Chen, H. Ren, J. Shi, W. Du, W. Zhang, Q. Feng, J. Yan et al., Unveiling Bandgap Evolution and Carrier Redistribution in Multilayer \(\text{ WSe}_{2}\): Enhanced Photon Emission via Heat Engineering. Adv. Opt. Mater. 8(2), 1901226 (2020)

    Google Scholar 

  18. M. Nath, S. Kar, A.K. Raychaudhuri, C.N.R. Rao, Superconducting \(\text{ NbSe}_{2}\) nanostructures. Chem. Phys. Lett. 368(5–6), 690–695 (2003)

    ADS  Google Scholar 

  19. T. Tsuneta, T. Toshima, K. Inagaki, T. Shibayama, S. Tanda, S. Uji, M. Ahlskog, P. Hakonen, M. Paalanen, Formation of metallic \(\text{ NbSe}_{2}\) nanotubes and nanofibers. Curr. Appl. Phys. 3(6), 473–476 (2003)

    ADS  Google Scholar 

  20. Y.-H. Kim, K.-J. Chang, S.G. Louie, Electronic structure of radially deformed BN and \(\text{ BC}_{3}\) nanotubes. Phys. Rev. B 63(20), 205408 (2001)

    ADS  Google Scholar 

  21. Y. Kinoshita, N. Ohno, Electronic structures of boron nitride nanotubes subjected to tension, torsion, and flattening: A first-principles DFT study. Phys. Rev. B 82(8), 085433 (2010)

    ADS  Google Scholar 

  22. S.S. Coutinho, V. Lemos, S. Guerini, Band-gap tunability of a (6, 0) BN nanotube bundle under pressure: Ab initio calculations. Phys. Rev. B 80(19), 193408 (2009)

    ADS  Google Scholar 

  23. H.M. Ghassemi, C.H. Lee, Y.K. Yap, R.S. Yassar, Field emission and strain engineering of electronic properties in boron nitride nanotubes. Nanotechnology 23(10), 105702 (2012)

    ADS  Google Scholar 

  24. J. Qi, X. Qian, L. Qi, J. Feng, D. Shi, J. Li, Strain-engineering of band gaps in piezoelectric boron nitride nanoribbons. Nano Lett. 12(3), 1224–1228 (2012)

    ADS  Google Scholar 

  25. Y.-M. Niquet, C. Delerue, C. Krzeminski, Effects of strain on the carrier mobility in silicon nanowires. Nano Lett. 12(7), 3545–3550 (2012)

    ADS  Google Scholar 

  26. S. Kumar, P. Suryanarayana, Bending moduli for forty-four select atomic monolayers from first principles. Nanotechnology 31(43), 43LT01 (2020)

    Google Scholar 

  27. K. Momma, F. Izumi, VESTA: a three-dimensional visualization system for electronic and structural analysis. J. Appl. Crystallogr. 41(3), 653–658 (2008)

    Google Scholar 

  28. M.J. Varjovi, M. Yagmurcukardes, F.M. Peeters, E. Durgun, Janus two-dimensional transition metal dichalcogenide oxides: First-principles investigation of W X O monolayers with X= S, Se, and Te. Phys. Rev. B 103(19), 195438 (2021)

    ADS  Google Scholar 

  29. Q.-L. **ong, J. Zhou, J. Zhang, T. Kitamura, Z.-H. Li, Spontaneous curling of freestanding Janus monolayer transition-metal dichalcogenides. Phys. Chem. Chem. Phys. 20(32), 20988–20995 (2018)

    Google Scholar 

  30. A. Bhardwaj, P. Suryanarayana, Elastic properties of Janus transition metal dichalcogenide nanotubes from first principles. Eur. Phys. J. B 95(1), 1–8 (2022)

    Google Scholar 

  31. M.B. Sreedhara, Y. Miroshnikov, K. Zheng, L. Houben, S. Hettler, R. Arenal, I. Pinkas, S.S. Sinha, I.E. Castelli, R. Tenne, Nanotubes from Ternary \(\text{ WS}_{2(1-\text{ x})}\text{ Se}_{\text{2x }}\) Alloys: Stoichiometry Modulated Tunable Optical Properties. J. Am. Chem. Soc. 144, 10530–10542. https://doi.org/10.1021/jacs.2c03187

  32. A. Bhardwaj, P. Suryanarayana, Strain engineering of Janus transition metal dichalcogenide nanotubes: an ab initio study. Eur. Phys. J. B 95(3), 1–9 (2022)

    Google Scholar 

  33. A. Bhardwaj, A. Sharma, P. Suryanarayana, Torsional strain engineering of transition metal dichalcogenide nanotubes: An ab initio study. Nanotechnology 32(47), 47LT01 (2021)

    Google Scholar 

  34. D. Yudilevich, R. Levi, I. Nevo, R. Tenne, A. Ya’akobovitz, E. Joselevich, Self-sensing torsional resonators based on inorganic nanotubes. ICME 1–4 (2018). https://www.aeai.org.il/wp-content/uploads/sites/3/2018/11/Mechanical-engineering-conference_Submission-1-1.pdf

  35. R. Levi, J. Garel, D. Teich, G. Seifert, R. Tenne, E. Joselevich, Nanotube electromechanics beyond carbon: the case of \(\text{ WS}_{2}\). ACS Nano 9(12), 12224–12232 (2015)

    Google Scholar 

  36. Y. Divon, R. Levi, J. Garel, D. Golberg, R. Tenne, A. Ya’akobovitz, E. Joselevich, Torsional resonators based on inorganic nanotubes. Nano Lett. 17(1), 28–35 (2017)

    ADS  Google Scholar 

  37. S. Barua, H.S. Dutta, R. Gogoi, S. Devi, R. Khan, Nanostructured \(\text{ MoS}_{2}\)-based advanced biosensors: a review. ACS Appl Nano Mater 1(1), 2–25 (2017)

    Google Scholar 

  38. H.E. Unalan, Y. Yang, Y. Zhang, P. Hiralal, D. Kuo, S. Dalal, T. Butler, S.N. Cha, J.E. Jang, K. Chremmou et al., ZnO Nanowire and \(\text{ WS}_{2}\) nanotubes Electronics. IEEE Trans. Electron Devices 55(11), 2988–3000 (2008)

    ADS  Google Scholar 

  39. C. Zhang, S. Wang, L. Yang, Y. Liu, T. Xu, Z. Ning, A. Zak, Z. Zhang, R. Tenne, Q. Chen, High-performance photodetectors for visible and near-infrared lights based on individual \(\text{ WS}_{2}\) nanotubes. Appl. Phys. Lett. 100(24), 243101 (2012)

    ADS  Google Scholar 

  40. Y.J. Zhang, T. Ideue, M. Onga, F. Qin, R. Suzuki, A. Zak, R. Tenne, J.H. Smet, Y. Iwasa, Enhanced intrinsic photovoltaic effect in tungsten disulfide nanotubes. Nature 570(7761), 349–353 (2019)

    ADS  Google Scholar 

  41. F.T. Bölle, A.E.G. Mikkelsen, K.S. Thygesen, T. Vegge, I.E. Castelli, Structural and chemical mechanisms governing stability of inorganic Janus nanotubes. npj Comput. Mater. 7(1), 1–8 (2021)

    ADS  Google Scholar 

  42. K. Saritas, S. Ismail-Beigi, Piezoelectric ferromagnetism in two-dimensional materials via materials screening. Phys. Rev. B 106(13), 134421 (2022)

    ADS  Google Scholar 

  43. C.-C. Chiu, C.-Y. Wang, B.-J. Huang, J.-L. Kuo, Electronic properties of 3 d transition metal dihalide monolayers predicted by DFT methods: is there a pattern or are the results random? J. Chin. Chem. Soc. (2023). https://doi.org/10.1002/jccs.202200487

  44. R. Li, J. Jiang, W. Mi, H. Bai, Room temperature spontaneous valley polarization in two-dimensional FeClBr monolayer. Nanoscale 13(35), 14807–14813 (2021)

    Google Scholar 

  45. S.-D. Guo, J.-X. Zhu, M.-Y. Yin, B.-G. Liu, Substantial electronic correlation effects on the electronic properties in a Janus FeClF monolayer. Phys. Rev. B 105(10), 104416 (2022)

    ADS  Google Scholar 

  46. M. Nath, C.N.R. Rao, Nanotubes of group 4 metal disulfides. Angew. Chem. Int. Ed. 41(18), 3451–3454 (2002)

    Google Scholar 

  47. A.V. Bandura, R.A. Evarestov, \(\text{ TiS}_{2}\) and \(\text{ ZrS}_{2}\) single-and double-wall nanotubes: first-principles study. J. Comput. Chem. 35(5), 395–405 (2014)

    Google Scholar 

  48. A. Sharma, P. Suryanarayana, Real-space density functional theory adapted to cyclic and helical symmetry: application to torsional deformation of carbon nanotubes. Phys. Rev. B 103(3), 035101 (2021)

    ADS  Google Scholar 

  49. D. Codony, I. Arias, P. Suryanarayana, Transversal flexoelectric coefficient for nanostructures at finite deformations from first principles. Phys. Rev. Mater. 5(3), L030801 (2021)

    ADS  Google Scholar 

  50. S. Kumar, D. Codony, I. Arias, P. Suryanarayana, Flexoelectricity in atomic monolayers from first principles. Nanoscale 13(3), 1600–1607 (2021)

    Google Scholar 

  51. A. Bhardwaj, A. Sharma, P. Suryanarayana, Torsional moduli of transition metal dichalcogenide nanotubes from first principles. Nanotechnology 32(28), 28LT02 (2021)

    Google Scholar 

  52. S. Kumar, P. Suryanarayana, On the bending of rectangular atomic monolayers along different directions: an ab initio study. Nanotechnology 34(8), 085701 (2022)

    ADS  Google Scholar 

  53. Q. Xu, A. Sharma, B. Comer, H. Huang, E. Chow, A.J. Medford, J.E. Pask, P. Suryanarayana, Sparc: simulation package for ab-initio real-space calculations. SoftwareX 15, 100709 (2021)

    Google Scholar 

  54. S. Ghosh, P. Suryanarayana, SPARC: accurate and efficient finite-difference formulation and parallel implementation of density functional theory: Isolated clusters. Comput. Phys. Commun. 212, 189–204 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  55. S. Ghosh, P. Suryanarayana, SPARC: Accurate and efficient finite-difference formulation and parallel implementation of Density Functional Theory: Extended systems. Comput. Phys. Commun. 216, 109–125 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  56. A.S. Banerjee, P. Suryanarayana, Cyclic density functional theory: a route to the first principles simulation of bending in nanostructures. J. Mech. Phys. Solids 96, 605–631 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  57. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865 (1996)

    ADS  Google Scholar 

  58. D.R. Hamann, Optimized norm-conserving Vanderbilt pseudopotentials. Phys. Rev. B 88(8), 085117 (2013)

    ADS  Google Scholar 

  59. M.F. Shojaei, J.E. Pask, A.J. Medford, P. Suryanarayana, Soft and transferable pseudopotentials from multi-objective optimization. Comput. Phys. Commun. 283, 108594 (2023)

    Google Scholar 

  60. S. Haastrup, M. Strange, M. Pandey, T. Deilmann, P.S. Schmidt, N.F. Hinsche, M.N. Gjerding, D. Torelli, P.M. Larsen, A.C. Riis-Jensen et al., The Computational 2D Materials Database: high-throughput modeling and discovery of atomically thin crystals. 2D Materials 5(4), 042002 (2018)

    Google Scholar 

  61. H.-H. Wu, Q. Meng, H. Huang, C.T. Liu, X.-L. Wang, Tuning the indirect-direct band gap transition in the \(\text{ MoS}_{2-\text{ x }}\text{ Se}_{\text{ x }}\) armchair nanotube by diameter modulation. Phys. Chem. Chem. Phys. 20(5), 3608–3613 (2018)

    Google Scholar 

  62. Z.-K. Tang, B. Wen, M. Chen, L.-M. Liu, Janus MoSSe nanotubes: tunable band gap and excellent optical properties for surface photocatalysis. Adv. Theory Simulations 1(10), 1800082 (2018)

    Google Scholar 

  63. A.E.G. Mikkelsen, F.T. Bölle, K.S. Thygesen, T. Vegge, I.E. Castelli, Band structure of MoSTe Janus nanotubes. Phys. Rev. Mater. 5(1), 014002 (2021)

    Google Scholar 

  64. Y.F. Luo, Y. Pang, M. Tang, Q. Song, M. Wang, Electronic properties of Janus MoSSe nanotubes. Comput. Mater. Sci. 156, 315–320 (2019)

    Google Scholar 

  65. L. Tao, Y.-Y. Zhang, J. Sun, S. Du, H.-J. Gao, Band engineering of double-wall Mo-based hybrid nanotubes. Chin. Phys. B 27(7), 076104 (2018)

    ADS  Google Scholar 

  66. S. **e, H. **, Y. Wei, S. Wei, Theoretical investigation on stability and electronic properties of Janus MoSSe nanotubes for optoelectronic applications. Optik 227, 166105 (2021)

    ADS  Google Scholar 

  67. Y.Z. Wang, R. Huang, B.L. Gao, G. Hu, F. Liang, Y.L. Ma, Mechanical and strain-tunable electronic properties of Janus MoSSe nanotubes. Chalcogenide Lett. 15(11), 535–543 (2018)

    Google Scholar 

  68. X. Gonze, J.-M. Beuken, R. Caracas, F. Detraux, M. Fuchs, G.-M. Rignanese, L. Sindic, M. Verstraete, G. Zerah, F. Jollet et al., First-principles computation of material properties: the ABINIT software project. Comput. Mater. Sci. 25(3), 478–492 (2002)

    Google Scholar 

  69. I. Kaplan-Ashiri, R. Tenne, Mechanical properties of \(\text{ WS}^{2}\) nanotubes. J. Cluster Sci. 18(3), 549–563 (2007)

    Google Scholar 

  70. I. Kaplan-Ashiri, S.R. Cohen, K. Gartsman, V. Ivanovskaya, T. Heine, G. Seifert, I. Wiesel, H.D. Wagner, R. Tenne, On the mechanical behavior of \(\text{ WS}^{2}\) nanotubes under axial tension and compression. Proc. Natl. Acad. Sci. 103(3), 523–528 (2006)

    ADS  Google Scholar 

  71. K.S. Nagapriya, O. Goldbart, I. Kaplan-Ashiri, G. Seifert, R. Tenne, E. Joselevich, Torsional stick-slip behavior in \(\text{ WS}_{2}\) nanotubes. Phys. Rev. Lett. 101(19), 195501 (2008)

    ADS  Google Scholar 

  72. N. Zibouche, M. Ghorbani-Asl, T. Heine, A. Kuc, Electromechanical properties of small transition-metal dichalcogenide nanotubes. Inorganics 2(2), 155–167 (2014)

    Google Scholar 

  73. W. Li, G. Zhang, M. Guo, Y.-W. Zhang, Strain-tunable electronic and transport properties of \(\text{ MoS}_{2}\) nanotubes. Nano Res. 7(4), 518–527 (2014)

    Google Scholar 

  74. Y.Z. Wang, R. Huang, X.Q. Wang, Q.F. Zhang, B.L. Gao, L. Zhou, G. Hua, Strain-tunable electronic properties of \(\text{ CrS}_{2}\) nanotubes. Chalcogenide Lett. 13(7), 301–307 (2016)

    Google Scholar 

  75. M. Ghorbani-Asl, N. Zibouche, M. Wahiduzzaman, A.F. Oliveira, A. Kuc, T. Heine, Electromechanics in \(\text{ MoS}_{2}\) and \(\text{ WS}_{2}\): nanotubes vs. monolayers. Sci. Rep. 3, 2961 (2013)

    ADS  Google Scholar 

  76. B.L. Li, J. Wang, H.L. Zou, S. Garaj, C.T. Lim, J. **e, N.B. Li, D.T. Leong, Low-dimensional transition metal dichalcogenide nanostructures based sensors. Adv. Func. Mater. 26(39), 7034–7056 (2016)

    Google Scholar 

  77. V. Sorkin, H. Pan, H. Shi, S.Y. Quek, Y.W. Zhang, Nanoscale transition metal dichalcogenides: structures, properties, and applications. Crit. Rev. Solid State Mater. Sci. 39(5), 319–367 (2014)

    ADS  Google Scholar 

  78. S. Oshima, M. Toyoda, S. Saito, Geometrical and electronic properties of unstrained and strained transition metal dichalcogenide nanotubes. Phys. Rev. Mater. 4(2), 026004 (2020)

    Google Scholar 

  79. G. Hautier, A. Miglio, G. Ceder, G.-M. Rignanese, X. Gonze, Identification and design principles of low hole effective mass p-type transparent conducting oxides. Nat. Commun. 4(1), 1–7 (2013)

    Google Scholar 

  80. C. Wee, S. Maikop, C.Y. Yu, Mobility-enhancement technologies. IEEE Circuits Devices Mag. 21(3), 21–36 (2005)

    Google Scholar 

  81. N. Mohta, Scott E. Thompson, Mobility enhancement. IEEE Circuits Devices Mag. 21(5), 18–23 (2005)

    Google Scholar 

  82. T. Mizuno, S. Takagi, N. Sugiyama, H. Satake, A. Kurobe, A. Toriumi, Electron and hole mobility enhancement in strained-Si MOSFET’s on SiGe-on-insulator substrates fabricated by SIMOX technology. IEEE Electron Device Lett. 21(5), 230–232 (2000)

    ADS  Google Scholar 

  83. C.K. Maiti, L.K. Bera, S.S. Dey, D.K. Nayak, N.B. Chakrabarti, Hole mobility enhancement in strained-Si p-MOSFETs under high vertical field. Solid-State Electron. 41(12), 1863–1869 (1997)

    ADS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of the U.S. National Science Foundation (CAREER-1553212). This research was supported in part through research cyber infrastructure resources and services provided by PACE at GT, including the Hive cluster (U.S. National Science Foundation Grant No. MRI-1828187).

Author information

Authors and Affiliations

Authors

Contributions

All of the authors contributed equally to this work.

Corresponding author

Correspondence to Phanish Suryanarayana.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 10224 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhardwaj, A., Suryanarayana, P. Ab initio study on the electromechanical response of Janus transition metal dihalide nanotubes. Eur. Phys. J. B 96, 36 (2023). https://doi.org/10.1140/epjb/s10051-023-00507-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-023-00507-0

Navigation