Log in

Transport signatures of anisotropic tilted Dirac cones in 8-Pmmn borophene

  • Regular Article - Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We present a theoretical study of electronic transport in a two-dimensional 8-Pmmn monolayer borophene crystal illuminated by off-resonant electromagnetic radiation within the linear response theory. We find asymmetry in the intrinsic anomalous Hall conductivity of the system, hallmark of anisotropic tilted structure of the Dirac cones in borophene. The width of maximum in the Hall conductivity is of the order of the bandgap in the energy spectrum induced by the radiation. Interestingly, thermal and Peltier conductivities also exhibit pronounced asymmetry in addition to the Hall conductivity of the system. It is shown that such asymmetry in the conductivity originates from the anisotropic tilt in the Dirac cone of borophene. We also find that 8-Pmmn borophene makes transition from type-I to type-II Dirac fermion system in the limit of large tilt parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This is a theoretical study with no experimental data].

References

  1. A.D. Zabolotskiy, Y.E. Lozovik, Phys. Rev. B 94, 165403 (2016)

    Article  ADS  Google Scholar 

  2. M. Nakhaee, S.A. Ketabi, F.M. Peeters, Phys. Rev. B 97, 125424 (2018)

    Article  ADS  Google Scholar 

  3. A.J. Mannix et al., Science 350, 1513 (2015)

    Article  ADS  Google Scholar 

  4. A. Lopez-Bezanilla, P.B. Littlewood, Phys. Rev. B 93, 241405(R) (2016)

    Article  ADS  Google Scholar 

  5. A. Yar, A. Ilyas, J. Phys. Soc. Jpn. 89, 124705 (2020)

    Article  ADS  Google Scholar 

  6. K. Sadhukhan, A. Agarwal, Phys. Rev. B 96, 035410 (2017)

    Article  ADS  Google Scholar 

  7. S.-H. Zhang, W. Yang, Phys. Rev. B 97, 235440 (2018)

    Article  ADS  Google Scholar 

  8. S. Verma, A. Mawrie, T.K. Ghosh, Phys. Rev. B 96, 155418 (2017)

    Article  ADS  Google Scholar 

  9. A.E. Champo, G.G. Naumis, Phys. Rev. B 99, 035415 (2019)

    Article  ADS  Google Scholar 

  10. B.D. Napitu, J. Appl. Phys. 127, 034303 (2020)

    Article  ADS  Google Scholar 

  11. G. C. Paul, SK Firoz Islam, and A. Saha, Phys. Rev. B 99, 155418 (2019)

  12. X.-F. Zhou et al., Phys. Rev. Lett. 112, 085502 (2014)

    Article  ADS  Google Scholar 

  13. R.G. Mani et al., Nature 420, 646 (2002)

    Article  ADS  Google Scholar 

  14. S. Wiedmann, G.M. Gusev, O.E. Raichev, A.K. Bakarov, J.C. Portal, Phys. Rev. Lett. 105, 026804 (2010)

    Article  ADS  Google Scholar 

  15. A. Yar, K. Sabeeh, J. Phys.: Condens. Matter 27, 435007 (2015)

    ADS  Google Scholar 

  16. A. Yar, M. Zubair, K. Sabeeh, J. Phys.: Condens. Matter 32, 095403 (2020)

    ADS  Google Scholar 

  17. C. Wang, F. Wang, J.C. Cao, Chaos 24, 033109 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  18. N.H. Lindner, G. Refael, V. Galitski, Nat. Phys. 7, 490 (2011)

    Article  Google Scholar 

  19. N.H. Lindner, D.L. Bergman, G. Refael, V. Galitski, Phys. Rev. B 87, 235131 (2013)

    Article  ADS  Google Scholar 

  20. T. Kitagawa, T. Oka, A. Brataas, L. Fu, E. Demler, Phys. Rev. B 84, 235108 (2011)

    Article  ADS  Google Scholar 

  21. T. Oka, H. Aoki, Phys. Rev. B 79, 081406(R) (2009)

    Article  ADS  Google Scholar 

  22. J.W. McIver et al., Nat. Phys. 16, 38 (2020)

    Article  Google Scholar 

  23. V. G. Ibarra-Sierra, J. C. Sandoval-Santana, A. Kunold, Gerardo G. Naumis, Phys. Rev. B 100, 125302 (2019)

  24. A. Menon, D. Chowdhury, B. Basu, Phys. Rev. B 98, 205109 (2018)

    Article  ADS  Google Scholar 

  25. K. Kitayama, M. Mochizuki, Phys. Rev. Res. 2, 023229 (2020)

  26. K. Kitayama, Y. Tanaka, M. Ogata, M. Mochizuki, J. Phys. Soc. Jpn. 90, 104705 (2021)

    Article  ADS  Google Scholar 

  27. X. Ling et al., Phys. Rev. A 103, 033515 (2021)

    Article  ADS  Google Scholar 

  28. C.-Z. Chang et al., Science 340, 167 (2013)

    Article  ADS  Google Scholar 

  29. N. Nagaosa, J. Sinova, S. Onoda, A.H. MacDonald, N.P. Ong, Rev. Mod. Phys. 82, 1539 (2010)

    Article  ADS  Google Scholar 

  30. S.-Y. Xu et al., Nat. Phys. 8, 616 (2012)

    Article  Google Scholar 

  31. D. **ao, M.-C. Chang, Q. Niu, Rev. Mod. Phys. 82, 1959 (2010)

    Article  ADS  Google Scholar 

  32. P. Wei, W. Bao, Y. Pu, C.N. Lau, J. Shi, Phys. Rev. Lett. 102, 166808 (2009)

    Article  ADS  Google Scholar 

  33. Y.M. Zuev, W. Chang, P. Kim, Phys. Rev. Lett. 102, 096807 (2009)

    Article  ADS  Google Scholar 

  34. P. Sengupta, Y. Tan, E. Bellotti, J. Shi, J. Phys.: Condens. Matter 30, 435701 (2018)

    ADS  Google Scholar 

  35. J. Li, T. Xu, G.-B. Zhu, H. Pan, Solid State Commun. 322, 114092 (2020)

    Article  Google Scholar 

  36. M. Bukov, L. \(\text{D}^{\prime }\)Alessio, and A. Polkovnikov, Adv. Phys. 64, 139 (2015)

  37. M.A. Mojarro, R. Carrillo-Bastos, J.A. Maytorena, Phys. Rev. B 103, 165415 (2021)

    Article  ADS  Google Scholar 

  38. P. Kapri, B. Dey, T.K. Ghosh, Phys. Rev. B 102, 045417 (2020)

    Article  ADS  Google Scholar 

  39. A. Yar, G. Bahadar, Ikramullah, K. Sabeeh, Phys. Lett. A 429, 127916 (2022)

  40. V. Vargiamidis, P. Vasilopoulos, G.-Q. Hai, J. Phys.: Condens. Matter 26, 345303 (2014)

    Google Scholar 

  41. Y.-L. Hong et al., Opt. Express 30, 14839 (2022)

    Article  ADS  Google Scholar 

  42. L.-L. Chang et al., Phys. E: Low-Dimens. Syst. 130, 114681 (2021)

    Article  Google Scholar 

  43. H. Zeng, J. Dai, W. Yao, D. **ao, X. Cui, Nat. Nanotechnol. 7, 490 (2012)

    Article  ADS  Google Scholar 

  44. K.F. Mak, K. He, J. Shan, T.F. Heinz, Nat. Nanotechnol. 7, 494 (2012)

    Article  ADS  Google Scholar 

  45. T. Yokoyama, S. Murakami, Phys. Rev. B 83, 161407(R) (2011)

    Article  ADS  Google Scholar 

  46. H. Isobe, N. Nagaosa, Phys. Rev. Lett. 116, 116803 (2016)

    Article  ADS  Google Scholar 

  47. L. Muechler, A. Alexandradinata, T. Neupert, R. Car, Phys. Rev. X 6, 041069 (2016)

    Google Scholar 

  48. A.A. Soluyanov et al., Nat. (Lond.) 527, 495 (2015)

    Article  ADS  Google Scholar 

  49. H. Zhang, Y. **e, C. Zhong, Z. Zhang, Y. Chen, J. Phys. Chem. C 121, 12476 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This research work was supported by the Office of Research, Innovation and Commercialization (ORIC), Kohat University of Science and Technology, Kohat through Project No.OFP-20(6)9.

Author information

Authors and Affiliations

Authors

Contributions

Abdullah Yar carried out the modeling and calculations, prepared the manuscript. Noor Ul Wahab contributed to the discussion of the whole paper.

Corresponding author

Correspondence to Abdullah Yar.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yar, A., Wahab, N.U. Transport signatures of anisotropic tilted Dirac cones in 8-Pmmn borophene. Eur. Phys. J. B 95, 123 (2022). https://doi.org/10.1140/epjb/s10051-022-00389-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-022-00389-8

Navigation