Log in

Thermally activated diffusion of impurities along a semiconductor layer

  • Regular Article - Statistical and Nonlinear Physics
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The dynamics of impurities that walk along a semiconductor layer assisted by thermal noise strength and quartic potential is explored analytically and numerically. Applying two cold spots in the vicinity of the quartic potential forces the system to undergo a phase transition from a single-well to a double-well effective potential. This also implies that the impurities (the positively charged particles) trapped by the quartic potential diffuses away from the central region and assemble around two peripheral regions (around local minima) of the semiconductor layer once the two cold spots are applied. The electrons, on the other hand, stay around the potential maxima where they occupy before cold spots are applied. The resulting charge distribution forms series of N–P–N junctions, indicating that our theoretical work gives a clue on how to fabricate artificial semiconductor layers. Moreover, the dynamics of these impurities as a function of model parameters is explored both analytically and with Monte Carlo simulation methods. In this work, not only we propose the ways of mobilizing (eradicating) unwanted dopants along the semiconductor layer but also we study the stochastic resonance for the impurity dynamics in the presence of a time-varying signal. Via Monte Carlo simulation approaches, we study how the signal-to-noise ratio as well as the spectral amplification depends on the model parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability statement

This manuscript has data included as electronic supplementary material. The online version of this article contains supplementary material, which is available to authorized users.

References

  1. S.M. Sze, Physics of Semiconductor Devices, 2nd edn. (Wiley, New York, 1981)

    Google Scholar 

  2. A.B. Sproul, M.A. Green, J. Appl. Phys. 70, 846 (1991)

  3. M.B. Prince, Phys. Rev. 93, 1204 (1954)

    Article  ADS  Google Scholar 

  4. M. Asfaw, B. Aragie, M. Bekele, Phys. J. B 79, 371 (2011)

    ADS  Google Scholar 

  5. B. Aragie, M. Asfaw, L. Demeyu, M. Bekele, Eur. Phys. J. B 87, 214 (2014)

    Article  ADS  Google Scholar 

  6. T. Birhanu, Y. Abebe, L. Demeyu, M. Asfaw, M. Bekele, Int. J. Mod. Phys. B 35, 2150284 (2021)

    Article  ADS  Google Scholar 

  7. B. Abeles, Phys. Rev. 131, 1906 (1963)

    Article  ADS  Google Scholar 

  8. V. Narayan, M. Willander, Phys. Rev. B 65, 125330 (2002)

    Article  ADS  Google Scholar 

  9. L. Gammaitoni, P. Hanggi, P. Jung, F. Marchesoni, Rev. Mod. Phys. 70, 223 (1998)

    Article  ADS  Google Scholar 

  10. L. Gammaitoni, F. Marchesoni, S. Santucci, Phys. Lett. A 195, 116 (1994)

    Article  ADS  Google Scholar 

  11. F. Marchesoni, L. Gammaitoni, A.R. Bulsara, Phys. Rev. Lett. 76, 2609 (1996)

    Article  ADS  Google Scholar 

  12. L. Gammaitoni, P. Hanggi, P. Jung, F. Marchesoni, Eur. Phys. J. B 69, 1 (2009)

    Article  ADS  Google Scholar 

  13. J.F. Lindner, M. Bennett, K. Wiesenfeld, Phys. Rev. E 73, 031107 (2006)

    Article  ADS  Google Scholar 

  14. P. Jung, P. Hanggi, Phys. Rev. A 44, 8032 (1991)

    Article  ADS  Google Scholar 

  15. R. Benzi, A. Sutera, A. Vulpiani, J. Phys. A 14, L453 (1981)

    Article  ADS  Google Scholar 

  16. P.S. Burada, G. Schmid, D. Reguera, M.H. Vainstein, J.M. Rubi, P. Hanggi, Phys. Rev. Lett. 101, 130602 (2008)

    Article  ADS  Google Scholar 

  17. J.F. Lindner, B.K. Meadows, W.L. Ditto, M.E. Inchiosa, A.R. Bulsara, Phys. Rev. Lett. 75, 3 (1995)

    Article  ADS  Google Scholar 

  18. J.F. Lindner, B.K. Meadows, W.L. Ditto, M.E. Inchiosa, A.R. Bulsara, Phys. Rev. E 53, 2081 (1996)

    Article  ADS  Google Scholar 

  19. F. Marchesoni, L. Gammaitoni, A.R. Bulsara, Phys. Rev. Lett. 76, 2609 (1996)

    Article  ADS  Google Scholar 

  20. M. Asfaw, W. Sung, EPL 90, 3008 (2010)

    Article  Google Scholar 

  21. M. Asfaw, Phys. Rev. E 82, 021111 (2010)

    Article  ADS  Google Scholar 

  22. P.K. Ghosh, F. Marchesoni, S.E. Savelev, F. Nori, Phys. Rev. Lett. 104, 020601 (2010)

    Article  ADS  Google Scholar 

  23. B. McNamara, K. Wiesenfeld, Phy. Rev. A 39, 4854 (1989)

    Article  ADS  Google Scholar 

  24. C. Nicolis, Tellus 34, 1 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  25. N.G. van Kampen, IBM J. Res. Dev. 32, 107 (1988)

    Article  Google Scholar 

  26. N.G. van Kampen, in Disorder Solids, Structures and Process. ed. by B. Di Bartolo (Plenum Press, New York, 1989)

    Google Scholar 

  27. C.W. Gardiner, Handbook of Stochastic Methods for Physcis, Chemistry and Natural science, 2nd edn. (Spiringerverlag, Berlin, 2003)

  28. V. Narayan, M. Willander, Phys. Rev. B 65, 075308 (2002)

    Article  ADS  Google Scholar 

  29. V. Narayan, S. Stafström, Phys. B 69, 075315 (2004)

    Google Scholar 

  30. H.A. Kramer, Physica 7, 284 (1940)

    Article  ADS  MathSciNet  Google Scholar 

  31. J. Zhang et al., Phys. Rev. B 48, 2312 (1993)

    Article  ADS  Google Scholar 

  32. P. Hanggi, P. Talkner, M. Borkovec, Rev. Mod. Phys. 62, 251 (1990)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

YA would like to thank Addis Ababa University and Adigrat University for financial support during his research. We would also like to thank the International Science Programme, Uppsala University, Uppsala, Sweden for the support they have provided to our research group.

Author information

Authors and Affiliations

Authors

Contributions

YA and MB: conception and design of study. YA, TB, and LD performed the simulations. YA, TB, and YB performed the analytic calculations. YA, TB, LD, and MB analysing and interpreting the results. YA, TB, LD, MT, MB, and YB drafted manuscript preparation. All authors reviews the results and approved the final version of the manuscript.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 227 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abebe, Y., Birhanu, T., Demeyu, L. et al. Thermally activated diffusion of impurities along a semiconductor layer. Eur. Phys. J. B 95, 9 (2022). https://doi.org/10.1140/epjb/s10051-021-00265-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-021-00265-x

Navigation