Log in

Density functional study of blue phosphorene–metal interface

  • Regular Article - Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Interface properties of monolayer blue phosphorus and low index metal surfaces has been studied using density functional method. Pd(111), Pd(110), Pd(100), Al(111), Au(110) and Ni(100) have been considered as electrodes in our calculations. To understand the chemistry of metal–blue phosphorene bonding, adsorption of individual atoms of these four metals on a blue phosphorus monolayer has also been studied. In addition to structural and electronic properties, barriers for charge injection at these metal blue phosphorus interfaces have been studied by calculating the Schottky and tunneling barrier heights. Al(111) surface appears to be the best Schottky contact for electron injection and Ni surface as tunnel contact among our chosen surfaces.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. H. Kanda, K. Watanabe, T. Taniguchi, Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat. Mater. 3, 404 (2004)

    Article  ADS  Google Scholar 

  2. H.S. Cahangirov, M. Topsakal, E. Bekaroglu, E. Akturk, R.T. Senger, S. Ciraci, Monolayer honeycomb structures of group-iv elements and iii–v binary compounds: First-principles calculations. Phys. Rev. B 80, 155453 (2009)

    Article  ADS  Google Scholar 

  3. S. Ullah, F. Sato, P.A. Denis, Non-trivial band gaps and charge transfer in janus-like functionalized bilayer boron arsenide. Comput. Mater. Sci. 170, 109186 (2019)

    Article  Google Scholar 

  4. M. Pudlak, R. Pincak, Electronic properties of double-layer carbon nanotubes. Eur. Phys. J. B 67, 565 (2009)

    Article  ADS  Google Scholar 

  5. M. Pudlak et al., Electronic structures of double-layer zig–zag carbon nanotube. J. Phys. Conf. Ser. 129, 012011 (2008)

    Article  Google Scholar 

  6. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004)

    Article  ADS  Google Scholar 

  7. Y. Yu, G. Ye, L. Li et al. Electric field effect in atomically thin carbon films. Nat. Nanotech 9, 372–377 (2014)

  8. V. Tran, R. Soklaski, Y. Liang, L. Yang, Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys. Rev. B 89, 235319 (2014)

    Article  ADS  Google Scholar 

  9. X. Kong, Z.X. Hu, J. Qiao, et al., High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 5, 4475 (2014)

  10. Z. Zhu, D. Tománek, Semiconducting layered blue phosphorus: a computational study. Phys. Rev. Lett. 112, 176802 (2014)

    Article  ADS  Google Scholar 

  11. J.L. Zhang et al., Epitaxial growth of single layer blue phosphorus: a new phase of two-dimensional phosphorus. Nano Lett. 16, 4903 (2016)

    Article  ADS  Google Scholar 

  12. Han et al., Prediction of green phosphorus with tunable direct band gap and high mobility. J. Phys. Chem. Lett. 8, 4627 (2017)

  13. C. Li et al., A promising blue phosphorene/c2n van der waals type-ii heterojunction as a solar photocatalyst: a first-principles study. Phys. Chem. Chem. Phys. 22, 615 (2020)

    Article  ADS  Google Scholar 

  14. Guo et al., Tuning electronic properties of blue phosphorene/graphene-like gan van der waals heterostructures by vertical external electric field. Nanoscale Res. Lett. 14, 174 (2019)

  15. M.R. Muller et al., Visibility of two-dimensional layered materials on various substrates. J. Appl. Phys. 118, 145305 (2019)

    Article  ADS  Google Scholar 

  16. A. Nipane et al., Electrostatics of lateral p–n junctions in atomically thin materials. J. Appl. Phys. 122, 194501 (2017)

    Article  ADS  Google Scholar 

  17. S. Ullah, P.A. Denis, M.G. Menezes, F. Sato, Tunable optoelectronic properties in h-bp/h-bas bilayers: the effect of an external electrical field. Appl. Surf. Sci. 493, 308–319 (2019)

    Article  ADS  Google Scholar 

  18. L.Z. Liu et al., Strain-induced band structure and mobility modulation in graphitic blue phosphorus. Appl. Surf. Sci. 356, 626 (2015)

    Article  ADS  Google Scholar 

  19. Z. Wang, B. Sa, Q. Peng et al. Electronic structures and enhanced optical properties of blue phosphorene/transition metal dichalcogenides van der waals heterostructures. Sci. Rep. 6, 31994 (2016)

  20. Sun et al., Tunable schottky barrier in van der waals heterostructures of graphene and g-gan. Appl. Phys. Lett. 110, 173105 (2017)

  21. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)

    Article  ADS  Google Scholar 

  22. S. Grimme, Semiempirical gga-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787 (2006)

    Article  Google Scholar 

  23. D.R. Bowler, J. Klimes, A. Michelides, Chemical accuracy for the van der waals density functional. J. Phys. Condens. Matter 22, 022201 (2009)

    Google Scholar 

  24. Y. Zhang, W. Yang, Comment on “generalized gradient approximation made simple”. Phys. Rev. Lett. 80, 890 (1998)

    Article  ADS  Google Scholar 

  25. J. Ribeiro-Soares, R.M. Almeida, L.G. Canado, M.S. Dresselhaus, A. Jorio, Group theory for structural analysis and lattice vibrations in phosphorene systems. Phys. Rev. B 91, 205421 (2015)

    Article  ADS  Google Scholar 

  26. L. Wang, K. Katsiev, J. Zheng et al. Adsorption configurations of carbon monoxide on gold monolayer supported by graphene or monolayer hexagonal boron nitride: a first-principles study. Eur. Phys. J. B 86, 441 (2013)

  27. Z. Zhu, C. Y. Niu, W. Yu et al. Dilute magnetic semiconductor and half-metal behaviors in 3d transition-metal doped black and blue phosphorenes: a first-principles study. Nanoscale Res. Lett. 11, 77 (2016)

  28. S. Narasimhan, D. Sharma, G. Gautam, A simple descriptor for binding and charge transfer at blue phosphorene-metal interfaces. Appl. Surf. Sci. 492, 16 (2019)

    Article  ADS  Google Scholar 

  29. A. Maity et al., Density functional study of metal-phosphorene interfaces. Int. J. Modern Phys. B 31, 1750077 (2017)

    Article  ADS  Google Scholar 

  30. R. Smoluchowski, Anisotropy of the electronic work function of metals. Phys. Rev. 60, 661–674 (1941)

    Article  ADS  Google Scholar 

  31. Y. Pan et al., Monolayer phosphorene-metal contacts. Chem. Mater. 28, 2100 (2016)

    Article  Google Scholar 

  32. Y. Cho-Tung, Y. Kai-Lun, L. Chi-Hang, Z. Si-Cong, H. Tie-Yi, Interface effect between blue phosphorus and metals. Phys. Lett. A 384, 126554 (2020)

  33. Y. Deng, P.D. Ye, Y. Du, H. Liu, Device perspective for black phosphorus field-effect transistors: contact resistance, ambipolar behavior, and scaling. ACS Nano 28, 10035 (2017)

    Google Scholar 

Download references

Acknowledgements

All the computations were performed at the HPC facility at HRI (http://www.hri.res.in/cluster/). A.M. acknowledge Prof. Prasenjit Sen for allowing computations in VASP code. The work was partially funded by Slovak Grant Agency for Science VEGA under the grant number VEGA 2/0009/19.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajanta Maity.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maity, A., Pinčák, R. Density functional study of blue phosphorene–metal interface. Eur. Phys. J. B 94, 77 (2021). https://doi.org/10.1140/epjb/s10051-021-00088-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-021-00088-w

Navigation