Log in

Pulse shape and molecular orientation determine the attosecond charge migration in Caffeine

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The recent reduction of laser pulse duration down to the attosecond regime offers unprecedented opportunities to investigate ultrafast changes in the electron density before nuclear motion sets in. Here, we investigate the hole dynamics in the Caffeine molecule that is induced by an ionizing XUV pulse of 6 fs duration using the approximate time-dependent density functional theory method TD-DFTB. In order to account for ionization in a localized atomic orbital basis we apply a complex absorbing potential to model the continuum. Propagation of the time-dependent Kohn–Sham equations allows us to extract the time-dependent hole density taking the pulse shape explicitly into account. Results show that the sudden ionization picture, which is often used to motivate an uncorrelated initial state, fails for realistic pulses. We further find a strong dependence of the hole dynamics on the polarization of the laser field. Notwithstanding, we observe fs charge migration between two distant functional groups in Caffeine even after averaging over the molecular orientation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Runge, E.K.U. Gross, Phys. Rev. Lett. 52, 997 (1984)

    Article  ADS  Google Scholar 

  2. S. Meng, J. Ren, E. Kaxiras, Nano Lett. 8, 3266 (2008)

    Article  ADS  Google Scholar 

  3. T. Otobe, M. Yamagiwa, J.I. Iwata, K. Yabana, T. Nakatsukasa, G.F. Bertsch, Phys. Rev. B 77, 165104 (2008)

    Article  ADS  Google Scholar 

  4. A.H. Zewail, Angew. Chem. Int. Ed. 39, 2586 (2000)

    Article  Google Scholar 

  5. R. Weinkauf, P. Schanen, D. Yang, S. Soukara, E. Schlag, J. Phys. Chem. 99, 11255 (1995)

    Article  Google Scholar 

  6. L. Lehr, T. Horneff, R. Weinkauf, E. Schlag, J. Phys. Chem. A 109, 8074 (2005)

    Article  Google Scholar 

  7. L. Belshaw, F. Calegari, M.J. Duffy, A. Trabattoni, L. Poletto, M. Nisoli, J.B. Greenwood, J. Phys. Chem. Lett. 3, 3751 (2012)

    Article  Google Scholar 

  8. F. Lépine, G. Sansone, M.J. Vrakking, Chem. Phys. Lett. 578, 1 (2013)

    Article  ADS  Google Scholar 

  9. F. Calegari et al., Science 346, 336 (2014)

    Article  ADS  Google Scholar 

  10. L.S. Cederbaum, J. Zobeley, Chem. Phys. Lett. 307, 205 (1999)

    Article  ADS  Google Scholar 

  11. J. Breidbach, L. Cederbaum, J. Chem. Phys. 118, 3983 (2003)

    Article  ADS  Google Scholar 

  12. A.I. Kuleff, L.S. Cederbaum, J. Phys. B: At. Mol. Opt. Phys. 47, 124002 (2014)

    Article  ADS  Google Scholar 

  13. H.W. Meldner, J.D. Perez, Phys. Rev. A 4, 1388 (1971)

    Article  ADS  Google Scholar 

  14. F. Remacle, R. Levine, Proc. Natl. Acad. Sci. 103, 6793 (2006)

    Article  ADS  Google Scholar 

  15. M. Lara-Astiaso, D. Ayuso, I. Tavernelli, P. Decleva, A. Palacios, F. Martin, Faraday Discuss. 194, 41 (2016)

    Article  ADS  Google Scholar 

  16. T.A. Niehaus, D. Heringer, B. Torralva, T. Frauenheim, Eur. Phys. J. D 35, 467 (2005)

    Article  ADS  Google Scholar 

  17. T.A. Niehaus, J. Mol. Struct.: THEOCHEM 914, 38 (2009)

    Article  Google Scholar 

  18. T.A. Niehaus, S. Suhai, F. Della Sala, P. Lugli, M. Elstner, G. Seifert, T. Frauenheim, Phys. Rev. B 63, 085108 (2001)

    Article  ADS  Google Scholar 

  19. F. Trani, G. Scalmani, G. Zheng, I. Carnimeo, M. Frisch, V. Barone, J. Chem. Theory Comput. 7, 3304 (2011)

    Article  Google Scholar 

  20. A. Dominguez, B. Aradi, T. Frauenheim, V. Lutsker, T.A. Niehaus, J. Chem. Theory Comput. 9, 4901 (2013)

    Article  Google Scholar 

  21. M. Elstner, D. Porezag, G. Jungnickel, J. Elsner, M. Haugk, T. Frauenheim, S. Suhai, G. Seifert, Phys. Rev. B 58, 7260 (1998)

    Article  ADS  Google Scholar 

  22. J. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  23. V.B. Singh, RSC Adv. 4, 58116 (2014)

    Article  Google Scholar 

  24. J. Breidbach, L. Cederbaum, Phys. Rev. Lett. 94, 033901 (2005)

    Article  ADS  Google Scholar 

  25. S. Klinkusch, P. Saalfrank, T. Klamroth, J. Chem. Phys. 131, 114304 (2009)

    Article  ADS  Google Scholar 

  26. J.A. Sonk, H.B. Schlegel, J. Phys. Chem. A 116, 7161 (2012)

    Article  Google Scholar 

  27. K. Lopata, N. Govind, J. Chem. Theory Comput. 9, 4939 (2013)

    Article  Google Scholar 

  28. P. Krause, J.A. Sonk, H.B. Schlegel, J. Chem. Phys. 140, 174113 (2014)

    Article  ADS  Google Scholar 

  29. T. Sommerfeld, M. Ehara, J. Chem. Theory Comput. 11, 4627 (2015)

    Article  Google Scholar 

  30. J.J. Goings, P.J. Lestrange, X. Li, Wiley Interdiscip. Rev. Comput. Mol. Sci. 8, e1341 (2018)

    Article  Google Scholar 

  31. R. Baer, E. Livshits, U. Salzner, Annu. Rev. Phys. Chem. 61, 85 (2010)

    Article  Google Scholar 

  32. D. Dougherty, E. Younathan, R. Voll, S. Abdulnur, S. McGlynn, J. Electron Spectrosc. Relat. Phenom. 13, 379 (1978)

    Article  Google Scholar 

  33. M. Moseler, B. Huber, H. Häkkinen, U. Landman, G. Wrigge, M.A. Hoffmann, B.v. Issendorff, Phys. Rev. B 68, 165413 (2003)

    Article  ADS  Google Scholar 

  34. L. Kronik, R. Fromherz, E. Ko, G. Ganteför, J.R. Chelikowsky, Nat. Mater. 1, 49 (2002)

    Article  ADS  Google Scholar 

  35. T. Körzdörfer, S. Kümmel, Phys. Rev. B 82, 155206 (2010)

    Article  Google Scholar 

  36. T. Leininger, H. Stoll, H.J. Werner, A. Savin, Chem. Phys. Lett. 275, 151 (1997)

    Article  ADS  Google Scholar 

  37. S. Refaely-Abramson, S. Sharifzadeh, N. Govind, J. Autschbach, J.B. Neaton, R. Baer, L. Kronik, Phys. Rev. Lett. 109, 226405 (2012)

    Article  ADS  Google Scholar 

  38. L. Kronik, S. Kümmel, in First principles approaches to spectroscopic properties of complex materials, Topics of Current Chemistry, edited by C. di Valentin, S. Botti, M. Coccoccioni (Springer, Berlin, 2014), Vol. 347 pp. 137–192

  39. T. Niehaus, F. Della Sala, Physica Status Solidi (b) 249, 237 (2012)

    Article  ADS  Google Scholar 

  40. V. Lutsker, B. Aradi, T.A. Niehaus, J. Chem. Phys. 143, 184107 (2015)

    Article  ADS  Google Scholar 

  41. A. Humeniuk, R. Mitrić, J. Chem. Phys. 143, 134120 (2015)

    Article  ADS  Google Scholar 

  42. J.J. Kranz, M. Elstner, B. Aradi, T. Frauenheim, V. Lutsker, A.D. Garcia, T.A. Niehaus, J. Chem. Theory Comput. 13, 1737 (2017)

    Article  Google Scholar 

  43. K. Yabana, G. Bertsch, Phys. Rev. B 54, 4484 (1996)

    Article  ADS  Google Scholar 

  44. M. Valiev, E.J. Bylaska, N. Govind, K. Kowalski, T.P. Straatsma, H.J. Van Dam, D. Wang, J. Nieplocha, E. Apra, T.L. Windus, W.A. de Jong, Comput. Phys. Commun. 181, 1477 (2010)

    Article  ADS  Google Scholar 

  45. M. Graf, P. Vogl, Phys. Rev. B 51, 4940 (1995)

    Article  ADS  Google Scholar 

  46. A. Marciniak, V. Despré, T. Barillot, A. Rouzée, M. Galbraith, J. Klei, C.H. Yang, C. Smeenk, V. Loriot, S.N. Reddy, A. Tielens, S. Mahapatra, A. Kuleff, M. Vrakking, F. Lépine, Nat. Commun. 6, 7909 (2015)

    Article  Google Scholar 

  47. A. Marciniak, Dynamique électronique femtoseconde et sub-femtoseconde d’édifices moléculaires complexes super-excités, Ph.D. thesis, Université de Lyon, 2016

  48. C. Ullrich, J. Mol. Struct. THEOCHEM 501, 315 (2000)

    Article  Google Scholar 

  49. A. Crawford-Uranga et al., Phys. Rev. A 90, 033412 (2014)

    Article  ADS  Google Scholar 

  50. P.M. Kraus, B. Mignolet, D. Baykusheva, A. Rupenyan, L. Horný, E.F. Penka, G. Grassi, O.I. Tolstikhin, J. Schneider, F. Jensen, L.B. Madsen, A.D. Bandrauk, F. Remacle, H.J. Wörner, Science 350, 790 (2015)

    Article  ADS  Google Scholar 

  51. M. Vacher, D. Mendive-Tapia, M.J. Bearpark, M.A. Robb, J. Chem. Phys. 142, 094105 (2015)

    Article  ADS  Google Scholar 

  52. A.J. Jenkins, M. Vacher, R.M. Twidale, M.J. Bearpark, M.A. Robb, J. Chem. Phys. 145, 164103 (2016)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas A. Niehaus.

Additional information

Contribution to the Topical Issue “Special Issue in honor of Hardy Gross”, edited by C.A. Ullrich, F.M.S. Nogueira, A. Rubio, and M.A.L. Marques.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niehaus, T.A., Meziane, M., Lepine, F. et al. Pulse shape and molecular orientation determine the attosecond charge migration in Caffeine. Eur. Phys. J. B 91, 152 (2018). https://doi.org/10.1140/epjb/e2018-90223-5

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2018-90223-5

Navigation