Log in

Controlling the noise enhanced stability effect via noise recycling in a metastable system

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We analyze the role of the delay time τ d and the fraction ε of recycled noise on the enhancement of the mean first-passage time (MFPT) in a metastable system with recycled noise, generated by the superposition of a primary Gaussian noise source with a second component of constant delay. The results indicate that MFPT as a function of the noise intensity D shows either a non-monotonic behavior with a maximum or a divergent behavior, which is the identifying characteristic of the noise enhanced stability (NES) phenomenon. The increasing of τ d or ε strengthens the NES effect for ε > 0. However, for ε < 0, there is a critical value of τ d , below which we observe an increase of MFPT whose maximum goes to infinity, and above which the divergent behavior tends to disappear and MFPT versus D shows a transition from one peak to two peaks and eventually one peak as τ d or |ε| increases. Moreover, we also discuss the effect of different initial conditions. These observations illustrate that the noise recycling may be used as an effective scheme for controlling the NES effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Moss, P.V.E. McClintock, Noise in Nonliner Dynamical Systems (Cambridge University Press, Cambridge, 1989), Vols. I–III

  2. C. R. Doering, J.C. Gadoua, Phys. Rev. Lett. 69, 2318 (1992)

    Article  ADS  Google Scholar 

  3. V.N. Smelyanskiy, M.I. Dykman, B. Golding, Phys. Rev. Lett. 82, 3193 (1999)

    Article  ADS  Google Scholar 

  4. M. Arrayás, M.I. Dykman, R. Mannella, P.V.E. McClintock, N.D. Stein, Phys. Rev. Lett. 84, 5470 (2000)

    Article  ADS  Google Scholar 

  5. J. Lehmann, P. Reimann, P. Hänggi, Phys. Rev. Lett. 84, 1639 (2000)

    Article  ADS  Google Scholar 

  6. R.S. Maier, D.L. Stein, Phys. Rev. Lett. 86, 3942 (2001)

    Article  ADS  Google Scholar 

  7. I. Dayan, M. Gitterman, G.H. Weiss, Phys. Rev. A 46, 757 (1992)

    Article  ADS  Google Scholar 

  8. R.N. Mantegna, B. Spagnolo, Phys. Rev. Lett. 76, 563 (1996)

    Article  ADS  Google Scholar 

  9. N.V. Augdov, B. Spagnolo, Phys. Rev. E 64, R035102 (2001)

    Article  ADS  Google Scholar 

  10. A.A. Dubkov, N.V. Agudov, B. Spagnolo, Phys. Rev. E 69, 061103 (2004)

    Article  ADS  Google Scholar 

  11. B. Spagnolo, N. Agudov, A. Dubkov, Acta Physics Polonia B 35, 1419 (2004)

    ADS  Google Scholar 

  12. A. Fiasconaro, B. Spagnolo, A. Ochab-Marcinek, E. Gudowska-Nowak, Phys. Rev. E 74, 041904 (2006)

    Article  ADS  Google Scholar 

  13. D. Valenti, G. Augello, B. Spagnolo, Eur. Phys. J. B 65, 443 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Z.L. Jia, D.C. Mei, Phys. Scr. 81, 055005 (2010)

    Article  ADS  Google Scholar 

  15. P. D’Odorico, F. Laio, L. Ridolfi, Proc. Natl. Acad. Sci. 102, 10819 (2005)

    Article  Google Scholar 

  16. L. Ridolfi, P. D’Odorico, F. Laio, J. Theor. Biol. 248, 301 (2007)

    Article  MathSciNet  Google Scholar 

  17. G. Augello, D. Valenti, B. Spagnolo, Int. J. Quantum Inf. 6, 801 (2008)

    Article  Google Scholar 

  18. G.Z. Sun, N. Dong, G.F. Mao, J. Chen, W.W. Xu, Z.M. Ji, L. Kang, P.H. Wu, Y. Yu, D.Y. **ng, Phys. Rev. E 75, 021107 (2007)

    Article  ADS  Google Scholar 

  19. G. Augello, D. Valenti, B. Spagnolo, Eur. Phys. J. B 78, 225 (2010)

    Article  ADS  Google Scholar 

  20. M. Trapanese, J. Appl. Phys. 105, 07D313 (2009)

    Article  Google Scholar 

  21. D.C. Mei, G.Z. **e, L. Cao, D.J. Wu, Phys. Rev. E 59, 3880 (1999)

    Article  ADS  Google Scholar 

  22. A. Mielke, Phys. Rev. Lett. 84, 818 (2000)

    Article  ADS  Google Scholar 

  23. P.I. Hurtado, J. Marro, P.L. Garrido, Phys. Rev. E 74, 050101 (2006)

    Article  ADS  Google Scholar 

  24. M. Yoshimoto, Phys. Lett. A 312, 59 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. M. Yoshimoto, H. Shirahama, S. Kurosawa, J. Chem. Phys. 129, 014508 (2008)

    Article  ADS  Google Scholar 

  26. A. Fiasconaro, B. Spagnolo, S. Boccaletti, Phys. Rev. E 72, 061110 (2005)

    Article  ADS  Google Scholar 

  27. A. Fiasconaro, J.J. Mazo, B. Spagnolo, Phys. Rev. E 82, 041120 (2010)

    Article  ADS  Google Scholar 

  28. A. Fiasconaro, B. Spagnolo, Phys. Rev. E 80, 041110 (2009)

    Article  ADS  Google Scholar 

  29. A. Fiasconaro, D. Valenti, B. Spagnolo, Physica A 325, 136 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. L.S. Tsimring, A. Pikovsky, Phys. Rev. Lett. 87, 250602 (2001)

    Article  ADS  Google Scholar 

  31. D. Huber, L.S. Tsimring, Phys. Rev. Lett. 91, 260601 (2003)

    Article  ADS  Google Scholar 

  32. Z.L. Jia, Chin. Phys. B 19, 020504 (2010)

    Article  ADS  Google Scholar 

  33. Z.L. Jia, Phys. Scr. 81, 015002 (2010)

    Article  ADS  Google Scholar 

  34. D.C. Mei, L.C. Du, C.J. Wang, J. Stat. Phys. 137, 625 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. C. Masoller, Phys. Rev. Lett. 90, 020601 (2003)

    Article  ADS  Google Scholar 

  36. Z.L. Jia, Chin. Phys. Lett. 25, 1209 (2008)

    Article  ADS  Google Scholar 

  37. Z.L. Jia, Physica A 387, 6247 (2008)

    Article  ADS  Google Scholar 

  38. Z.L. Jia, D.C. Mei, Phys. Scr. 83, 035008 (2011)

    Article  ADS  Google Scholar 

  39. Z.L. Jia, D.C. Mei, J. Stat. Mech. P10010 (2011)

  40. G. Schmid, P. Hänggi, Physica A 351, 95 (2005)

    Article  ADS  Google Scholar 

  41. I. Goychuk, P. Hänggi, Europhys. Lett. 43, 503 (1998)

    Article  ADS  Google Scholar 

  42. M. Borromeo, S. Giusepponi, F. Marchesoni, Phys. Rev. E 74, 031121 (2006)

    Article  ADS  Google Scholar 

  43. M. Borromeo, F. Marchesoni, Phys. Rev. E 75, 041106 (2007)

    Article  ADS  Google Scholar 

  44. D. Goulding, S. Melnik, D. Curtin, T. Piwonski, J. Houlihan, J.P. Gleeson, G. Huyet, Phys. Rev. E 76, 031128 (2007)

    Article  ADS  Google Scholar 

  45. J. Ma, Z.H. Hou, H.W. **n, Eur. Phys. J. B 69, 101 (2009)

    Article  ADS  Google Scholar 

  46. B. Caron et al., Class. Quantum Grav. 14, 1461 (1997)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. L. Jia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jia, Z.L., Mei, D.C. Controlling the noise enhanced stability effect via noise recycling in a metastable system. Eur. Phys. J. B 85, 139 (2012). https://doi.org/10.1140/epjb/e2012-20924-6

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2012-20924-6

Keywords

Navigation