Log in

Pattern formation, social forces, and diffusion instability in games with success-driven motion

  • Interdisciplinary Physics
  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

A local agglomeration of cooperators can support the survival or spreading of cooperation, even when cooperation is predicted to die out according to the replicator equation, which is often used in evolutionary game theory to study the spreading and disappearance of strategies. In this paper, it is shown that success-driven motion can trigger such local agglomeration and may, therefore, be used to supplement other mechanisms supporting cooperation, like reputation or punishment. Success-driven motion is formulated here as a function of the game-theoretical payoffs. It can change the outcome and dynamics of spatial games dramatically, in particular as it causes attractive or repulsive interaction forces. These forces act when the spatial distributions of strategies are inhomogeneous. However, even when starting with homogeneous initial conditions, small perturbations can trigger large inhomogeneities by a pattern-formation instability, when certain conditions are fulfilled. Here, these instability conditions are studied for the prisoner’s dilemma and the snowdrift game. Furthermore, it is demonstrated that asymmetrical diffusion can drive social, economic, and biological systems into the unstable regime, if these would be stable without diffusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • J. von Neumann, O. Morgenstern, Theory of Games and Economic Behavior (Princeton University Press, Princeton, 1944)

  • R. Axelrod, The Evolution of Cooperation (Basic, New York, 1984)

  • A. Rapoport, Game Theory as a Theory of Conflict Resolution (Reidel, Dordrecht, 1974)

  • H. Gintis, Game Theory Evolving (Princeton University Press, Princeton, 2000)

  • K. Binmore, Playing for Real (Oxford University Press, Oxford, 2007)

  • M.A. Nowak, Evolutionary Dynamics (Belknap Press, Cambridge, MA, 2006)

  • G. Szabó, G. Fath, Phys. Rep. 446, 97 (2007)

    Google Scholar 

  • Handbook of Experimental Economics, edited by J.H. Kagel, A.E. Roth (Princeton University Press, Princeton, 1995)

  • C.F. Camerer, Behavioral Game Theory (Princeton University Press, Princeton, 2003)

  • Foundations of Human Sociality: Economic Experiments and Ethnographic Evidence from Fifteen Small-Scale Societies, edited by J. Henrich, R. Boyd, S. Bowles, C. Camerer, E. Fehr, H. Gintis (Oxford University Press, Oxford, 2004)

  • U. Fischbacher, S. Gächter, E. Fehr, Economics Lett. 71, 397 (2001)

    Google Scholar 

  • E. Sober, D.S. Wilson, Unto Others: The Evolution and Psychology of Unselfish Behavior (Harvard Univ. Press, Cambridge, Massachusetts, 1998)

  • M.W. Macy, A. Flache, Proc. Natl. Acad. Sci. (USA) 99, Suppl. 3, 7229 (2002)

  • D. Helbing, A mathematical model for behavioral changes by pair interactions, in Economic Evolution and Demographic Change. Formal Models in Social Sciences, edited by G. Haag, U. Mueller, K.G. Troitzsch (Springer, Berlin, 1992), pp. 330–348

  • D. Helbing, Theory and Decision 40, 149 (1996)

  • D. Helbing, Quantitative Sociodynamics (Kluwer Academic, Dordrecht, 1995)

  • J. Hofbauer, K. Sigmund, Evolutionstheorie und dynamische Systeme (Paul Parey, Berlin, 1984)

  • J. Hofbauer, K. Sigmund, The Theory of Evolution and Dynamical Systems (Cambridge University, Cambridge, 1988)

  • M. Eigen, Naturwissenschaften 58, 465ff (1971)

  • R.A. Fisher, The Genetical Theory of Natural Selection (Oxford University Press, Oxford, 1930)

  • M. Eigen, P. Schuster, The Hypercycle (Springer, Berlin, 1979)

  • D. Helbing, P. Molnár, Phys. Rev. E 51, 4282 (1995)

    Google Scholar 

  • D. Helbing, I. Farkas, T. Vicsek, Nature 407, 487 (2000)

    Google Scholar 

  • D. Helbing, B. Tilch, Phys. Rev. E 58, 133 (1998)

    Google Scholar 

  • D. Helbing, A. Johansson, H.Z. Al-Abideen, Phys. Rev. E 75, 046109 (2007)

    Google Scholar 

  • D. Helbing, L. Buzna, A. Johansson, T. Werner, Transportation Sci. 39(1), 1 (2005)

  • S.P. Hoogendoorn, W. Daamen, Transportation Science 39(2), 147 (2005)

    Google Scholar 

  • A. Johansson, D. Helbing, P.S. Shukla, Advances in Complex Systems 10, 271 (2007)

    Google Scholar 

  • W. Yu, A. Johansson, Phys. Rev. E 76, 046105 (2007)

    Google Scholar 

  • J.W. Pepper, Artificial Life 13, 1 (2007)

    Google Scholar 

  • C. Hauert, S. De Monte, J. Hofbauer, K. Sigmund, Science 296, 1129 (2002)

    Google Scholar 

  • M. Doebeli, C. Hauert, Ecology Lett. 8, 748 (2005)

    Google Scholar 

  • C. Hauert, Proc. R. Soc. Lond. B 268, 761 (2001)

    Google Scholar 

  • D. Helbing, W. Yu, Adv. Complex Systems 11(4), 641 (2008)

    Google Scholar 

  • G. Szabó, C. Hauert, Phys. Rev. Lett. 89, 118101 (2002)

    Google Scholar 

  • D. Helbing, T. Vicsek, New Journal of Physics 1, 13.1 (1999)

    Google Scholar 

  • D. Helbing, T. Platkowski, Int. J Chaos Theory and Applications 5(4), 47 (2000)

    Google Scholar 

  • H. Risken, The Fokker-Planck Equation: Methods of Solution and Applications (Springer, Berlin, 1989)

  • A.M. Turing, Phil. Trans. Royal Soc. London B 237, 37 (1952)

    Google Scholar 

  • A.D. Kessler, H. Levine, Nature 394, 556 (1998)

    Google Scholar 

  • A. Gierer, H. Meinhardt, Kybernetik 12, 30 (1972)

    Google Scholar 

  • J.D. Murray, Mathematical Biology, Vol. II (Springer, New York, 2002)

  • A.B. Rovinsky, M. Menzinger, Phys. Rev. Lett. 69, 1193 (1992)

    Google Scholar 

  • S.P. Dawson, A. Lawniczak, R. Kapral, J. Chem. Phys. 100, 5211 (1994)

    Google Scholar 

  • A.B. Rovinsky, M. Menzinger, Phys. Rev. Lett. 72, 2017 (1994)

  • Y. Balinsky Khazan, L.M. Pismen, Phys. Rev. E 58, 4524 (1998)

    Google Scholar 

  • R. Satnoianu, J. Merkin, S. Scott, Phys. Rev. E 57, 3246 (1998)

    Google Scholar 

  • W. Horsthemke, R. Lefever, Noise-Induced Transitions (Springer, Berlin, 1984)

  • D. Helbing, T. Platkowski, Europhys. Lett. 60, 227 (2000)

    Google Scholar 

  • C. Hauert, M. Doebeli, Nature 428, 643 (2004)

    Google Scholar 

  • E.W. Montroll, Proc. Natl. Acad. Sci USA 75, 4633 (1978)

    Google Scholar 

  • K. Lewin, Field Theory in the Social Science (Harper & Brothers, New York, 1951)

  • D. Helbing, J. Math. Soc. 19 (3), 189 (1994)

    Google Scholar 

  • E. Fehr, S. Gächter, Nature 415, 137 (2002)

    Google Scholar 

  • E. Ravenstein, The Geographical Magazine III, 173–177, 201–206, 229–233 (1876)

  • G.K. Zipf, Sociological Rev. 11, 677 (1946)

  • A.G. Wilson, J. Transport Econ. Policy 3, 108 (1969)

  • S. Brice, Transpn. Res. B 23(1), 19 (1989)

    Google Scholar 

  • H. Hotelling, Environment and Planning A 10, 1223 (1978)

    Google Scholar 

  • T. Puu, Environment and Planning A 17, 1263 (1985)

    Google Scholar 

  • W. Weidlich, G. Haag (eds.) Interregional Migration (Springer, Berlin, 1988).

  • Mathematical Methods for Physics and Engineering, K.F. Riley, M.P. Hobson, S.J. Bence (Cambridge University, Cambridge, 2006)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Helbing.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Helbing, D. Pattern formation, social forces, and diffusion instability in games with success-driven motion. Eur. Phys. J. B 67, 345–356 (2009). https://doi.org/10.1140/epjb/e2009-00025-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2009-00025-7

PACS

Navigation