Log in

Current, maximum power and optimized efficiency of a Brownian heat engine

  • Published:
The European Physical Journal B - Condensed Matter and Complex Systems Aims and scope Submit manuscript

Abstract.

A microscopic heat engine is modeled as a Brownian particle in a sawtooth potential (with load) moving through a highly viscous medium driven by the thermal kick it gets from alternately placed hot and cold heat reservoirs. We found closed form expression for the current as a function of the parameters characterizing the model. Depending on the values these model parameters take, the engine is also found to function as a refrigerator. Expressions for the efficiency as well as for the refrigerator performance are also reported. Study of how these quantities depend on the model parameters enabled us in identifying the points in the parameter space where the engine performs with maximum power and with optimized efficiency. The corresponding efficiencies of the engine are then compared with those of the endoreversible and Carnot engines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.D. Astumian, P. Hanggi, Phys. Today 55, 33 (2002)

    Google Scholar 

  2. P. Reimann, Phys. Rep. 361, 57 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. J.M.R. Parrondo, B.J. De Cisneros, Appl. Phys. A 75, 179 (2002)

    Article  Google Scholar 

  4. I. Derényi, M. Bier, R.D. Astumian, Phys. Rev. Lett. 83, 903 (1999)

    Article  Google Scholar 

  5. F. Jülicher, A. Ajdari, J. Prost, Rev. Mod. Phys. 69, 1269 (1997)

    Article  Google Scholar 

  6. A. Calvo Herńandez et al., Phys. Rev. E 63, 037102 (2001)

    Article  Google Scholar 

  7. M. Büttiker, Z. Phys. B 68, 161 (1987)

    Google Scholar 

  8. N.G. van Kampen, IBM J. Res. Dev. 32, 107 (1988)

    Google Scholar 

  9. R. Landauer, J. Stat. Phys. 53, 233 (1988)

    Google Scholar 

  10. R. Landauer, Phys. Rev. A 12, 636 (1975)

    Article  Google Scholar 

  11. R. Landauer, Helv. Phys. Acta 56, 847 (1983)

    Google Scholar 

  12. M.M. Millonas, Phys. Rev. Lett. 74, 10 (1995)

    Article  Google Scholar 

  13. Miki Matsuo, Shin-ichi Sasa, Physica A 276, 188 (1999)

    Google Scholar 

  14. I. Derényi, R.D. Astumian, Phys. Rev. E 59, R6219 (1999)

  15. Tsuyoshi Hondou, Ken Sekimoto, Phys. Rev. E 62, 6021 (2000)

    Article  Google Scholar 

  16. N.G. van Kampen, J. Phys. Chem. Solids 49, 673 (1988)

    Article  Google Scholar 

  17. S. Fekade, M. Bekele, Eur. Phys. J. B 26, 369 (2002)

    Article  Google Scholar 

  18. J.M. Sancho, M. San Miguel, D. Dürr, J. Stat. Phys. 28, 291 (1982)

    MathSciNet  MATH  Google Scholar 

  19. A.M. Jayannavar, M. Mahato, Pramana - J. Phys. 45, 369 (1995)

    Google Scholar 

  20. Mesfin Asfaw, M. Sc. thesis, Addis Ababa University, Addis Ababa, June 2002 (unpublished)

  21. J. Howard, Mechanics of Motor Proteins and Cytoskeleton (Sinauers Associates, 2001)

  22. F.L. Curzon, B. Ahlborn, Am. J. Phys. 43, 22 (1975)

    Google Scholar 

  23. P. Salamon et al. , Energy (Oxford) 26, 307 (2001)

    Google Scholar 

  24. Ya.M. Blanter, M. Büttiker, Phys. Rev. Lett. 81, 4040 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mulugeta Bekele.

Additional information

Received: 28 December 2003, Published online: 28 May 2004

PACS:

05.40.Jc Brownian motion - 05.60.-k Transport processes - 05.70.-a Thermodynamics

Mesfin Asfaw: Present address: Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asfaw, M., Bekele, M. Current, maximum power and optimized efficiency of a Brownian heat engine. Eur. Phys. J. B 38, 457–461 (2004). https://doi.org/10.1140/epjb/e2004-00140-y

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2004-00140-y

Keywords

Navigation