Log in

Pure gauge flux tube and running coupling from EMT at high temperature

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

In this work, we measure the flux tube from the energy-momentum tensor around the static quark and antiquark in SU(3) pure gauge theory at high temperatures. The gradient flow method has been used to formulate the energy-momentum tensor on the lattice and increase the signal-to-noise ratio. In this study, we have tried to compute the running coupling \(\alpha _s\) from the energy-momentum tensor in the flux tube for the \(Q\bar{Q}\) pair. From the dependence of \(\alpha _s\) on temperature and interquark distance, the maximum value of \(\alpha _s\) at a certain distance for each temperature has been found, and the distance was inversely proportional to temperature \(R_{max}=0.5 fm \cdot T_c/T\). Also, we found that between the \(R_{max}\) and flux tube disappearance distance \(R_{screen}\) has weak linear dependence. We also showed that the flux tube structure completely disappeared from the stress-tensor distribution around the quark and antiquark at this distance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availibility Statement

This manuscript has no associated data in a data repository. [Authors’ comment: All data generated during this study are contained in this published article.]

Code Availability Statement

Code/software will be made available on reasonable request. [Author’s comment: The code generated and analyzed during the current study is available from the corresponding author on reasonable request.]

References

  1. M. Fukugita, Phys. Lett. B 132, 374 (1983)

    Article  ADS  Google Scholar 

  2. J.W. Flower, S.W. Otto, Phys. Lett. B 160, 128 (1985)

    Article  ADS  Google Scholar 

  3. J. Wosiek, R.W. Haymaker, Phys. Rev. D 36, 3297 (1987)

    Article  ADS  Google Scholar 

  4. A.D. Giacomo, M. Maggiore, S. Olejnik, Nucl. Phys. B 347, 441 (1990)

  5. Y. Matsubara, S. Ejiri, T. Suzuki, Nucl. Phys. Proc. Suppl 34, 176 (1994)

  6. G.S. Bali, C. Schlichter, K. Schilling, Phys. Rev. D 51, 5165 (1995)

    Article  ADS  Google Scholar 

  7. P. Cea, L. Cosmai, Phys. Rev. D 52, 5152 (1995)

    Article  ADS  Google Scholar 

  8. M.S. Cardaci, P. Cea, L. Cosmai, R. Falcone, A. Papa, Phys. Rev. D 83, 014502 (2011)

    Article  ADS  Google Scholar 

  9. N. Cardoso, M. Cardoso, P. Bicudo, Phys. Rev. D 88, 054504 (2013)

    Article  ADS  Google Scholar 

  10. P. Cea, L. Cosmai, F. Cuteri, A. Papa, Phys. Rev. D 89, 094505 (2014)

    Article  ADS  Google Scholar 

  11. P. Cea, L. Cosmai, F. Cuteri, A. Papa, J. High Energ. Phys. 06, 033 (2016)

    Article  ADS  Google Scholar 

  12. S. Chagdaa, E. Galsandorj, E. Laermann, B. Purev, J. Phys. G: Nucl. Part. Phys 45, 025002 (2017)

    Article  ADS  Google Scholar 

  13. M. Baker, P. Cea, V. Chelnokov, L. Cosmai, F. Cuteri, A. Papa, The. Eur. Phys. J. C 80, 514 (2020)

    Article  ADS  Google Scholar 

  14. P. Bicudo, N. Cardoso, M. Cardoso, Nucl. Phys. B 940, 88 (2019)

    Article  ADS  Google Scholar 

  15. M. Baker, V. Chelnokov, L. Cosmai, F. Cuteri, A. Papa, PoS (LATTICE2021) 355 (2021)

  16. S. Chagdaa, B. Purev, E. Galsandorj, J. Phys. G: Nucl. Part. Phys 48, 125001 (2021)

    Article  ADS  Google Scholar 

  17. R. Yanagihara, T. Iritani, M. Kitazawa, M. Asakawa, T. Hatsuda, Phys. Lett. B 789, 210 (2019)

    Article  ADS  Google Scholar 

  18. R. Yanagihara, T. Iritani, M. Kitazawa, M. Asakawa, T. Hatsuda, PoS (LATTICE2019) 004 (2019)

  19. E. Galsandorj, S. Chagdaa, B. Purev, M. Batgerel, PoS (LATTICE2022) 278 (2022)

  20. O. Kaczmarek, F. Karsch, P. Petreczky, F. Zantow, Phys. Lett. B 543, 074505 (2002)

    Article  Google Scholar 

  21. O. Kaczmarek, F. Karsch, F. Zantow, P. Petreczky, Phys. Rev. D 70, 074505 (2004)

    Article  ADS  Google Scholar 

  22. O. Kaczmarek, F. Zantow, Phys. Rev. D 71, 114510 (2005)

    Article  ADS  Google Scholar 

  23. A. Bazavov, N. Brambilla, P. Petreczky, A. Vairo, J.H. Weber, Phys. Rev. D 98, 054511 (2018)

    Article  ADS  Google Scholar 

  24. R. Luescher, J. High Energ. Phys. 08, 071 (2010)

    Article  ADS  Google Scholar 

  25. R. Luescher, P. Weisz, J. High Energ. Phys. 02, 051 (2011)

    Article  ADS  Google Scholar 

  26. L. Altenkort, O. Kaczmarek, L. Mazur, H.T. Shu, PoS (LATTICE2019) 204 (2019)

  27. H. Suzuki, Prog. Theor. and Exp. Phys. 8 (2013) 083B03. Erratum: Prog. Theor. and Exp. Phys. 7 (2015) 079201

  28. R.V. Harlander, Y. Kluth, F. Lange, Eur. Phys. J. C 78, 944 (2018)

    Article  ADS  Google Scholar 

  29. T. Iritani, M. Kitazawa, H. Suzuki, H. Takaura, Prog. of Theor. and Exp. Phys. 2 (2019) 023B02

  30. M. Kitazawa, T. Iritani, M. Asakawa, T. Hatsuda, H. Suzuki, Phys. Rev. D 94, 114512 (2016)

  31. R. Yanagihara, M. Kitazawa, A. Asakawa, T. Hatsuda, Phys. Rev. D 102, 114522 (2020)

    Article  ADS  Google Scholar 

  32. C. Schlichter, G. Bali, K. Schilling, Nucl. Phys. B 42, 273 (1995)

    Article  Google Scholar 

Download references

Acknowledgements

This study performed at Institute of Physics and Technology, Mongolian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enkhtuya Galsandorj.

Ethics declarations

Conflict of interest

The authors have no Conflict of interest to declare that are relevant to the content of this article

Additional information

Communicated by Heng-Tong Ding.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galsandorj, E., Chagdaa, S. & Batgerel, M. Pure gauge flux tube and running coupling from EMT at high temperature. Eur. Phys. J. A 60, 113 (2024). https://doi.org/10.1140/epja/s10050-024-01328-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-024-01328-0

Navigation