Log in

Shape isomeric states effects on the giant monopole resonances in even-even molybdenum isotopes

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

In this work, a systematic study of the shape evolutions of the even-even molybdenum isotopes is carried out within the density-dependent meson-exchange theory. For each shape isomeric state, we have investigated the isoscalar giant monopole resonances (ISGMR) using the quasiparticle finite amplitude method (QFAM). This method allows us to explore the behavior of these resonances in various nuclear deformation. Large quadrupole deformation parameter, both in oblate and prolate configuration, causes the shoulders of ISGMR to occur in the high-energy region rather than the low-energy region. It is observed that main peak of ISGMR permutes position with the shoulders. This intriguing and noteworthy behavior is attributed to the indirect effects of deformation on the monopole response, achieved through the splitting of the neutron canonical spectrum into (J+1/2) non-degenerate states. Under spherical symmetry, only the shoulders are affected by the neutron excess. Indeed, when sub-shells are filled at the same orbital, this contributes to the shift of the shoulders toward the low-energy region while increasing their magnitudes. The observed shoulders are identified as soft monopoles, consistent with their conventional interpretation. Furthermore, the soft monopole mode can be explained also by the deformation-induced coupling between the ISGMR and the component K = 0 of isoscalar giant quadrupole resonance (ISGQR) strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All data generated during this study are contained in this published article.]

References

  1. P.F. Bortignon, A. Bracco, R.A. Broglia, Giant Resonances. Nuclear Structure at Finite Temperature (CRC Press, Boca Raton, 2019)

    Google Scholar 

  2. M. Harakeh, A. Woude, Giant Resonances: Fundamental High-frequency Modes of Nuclear Excitation, Oxford Studies in Nuclear Phys (2001)

  3. J. Blaizot, Phys. Rep. 64, 171 (1980)

    ADS  MathSciNet  Google Scholar 

  4. U. Garg, G. Coló, Prog. Part. Nucl. Phys. 101, 55–95 (2018)

    ADS  Google Scholar 

  5. C.J. Horowitz, J. Piekarewicz, Phys. Rev. Lett. 86, 5647 (2001)

    ADS  Google Scholar 

  6. P.-G. Reinhard, W. Nazarewicz, Phys. Rev. C 81, 051303 (2010)

    ADS  Google Scholar 

  7. T. Miyatsu, M.-K. Cheoun, K. Saito, Phys. Rev. C 88, 015802 (2013)

    ADS  Google Scholar 

  8. C.J. Horowitz et al., J. Phys. G 41, 093001 (2014)

    ADS  Google Scholar 

  9. G.C. Baldwin, G.S. Klaiber, Phys. Rev. 71(8), 554 (1947)

    ADS  Google Scholar 

  10. P. Carlos, H. Beil, R. Bergere, A. Lepretre, A. Veyssiere, Nucl. Phys. A 172, 437 (1971)

    ADS  Google Scholar 

  11. P. Carlos, H. Beil, R. Bergere, A. Lepretre, A. De Miniac, A. Veyssiere, Nucl. Phys. A 225, 171 (1974)

    ADS  Google Scholar 

  12. L. Donaldson et al., Phys. Lett. B 776, 133 (2018)

    ADS  Google Scholar 

  13. E. Ramakrishnan et al., Phys. Rev. Lett. 76, 2025 (1996)

    ADS  Google Scholar 

  14. J. Gundlach et al., Phys. Rev. Lett. 65, 2523 (1990)

    ADS  Google Scholar 

  15. R. Pitthan, T. Walcher, Phys. Lett. B 36(6), 563–564 (1971)

    ADS  Google Scholar 

  16. M.B. Lewis, F.E. Bertrand, Nucl. Phys. A 196(2), 337–346 (1972)

    ADS  Google Scholar 

  17. M.N. Harakeh et al., Phys. Rev. Lett. 38(13), 676 (1977)

    ADS  Google Scholar 

  18. D.H. Youngblood et al., Phys. Rev. Lett. 39, 1188 (1977)

    ADS  Google Scholar 

  19. S. Fukuda, Y. Torizuka, Phys. Rev. Lett. 29(16), 1109 (1972)

    ADS  Google Scholar 

  20. B.L. Berman, S.C. Fultz, Rev. Mod. Phys. 47, 713 (1975)

    ADS  Google Scholar 

  21. J.P. Blaizot et al., Nucl. Phys. A 591(3), 435–457 (1995)

    ADS  Google Scholar 

  22. C.W. Wong, Phys. Rep. 15(5), 283–357 (1975)

    ADS  MathSciNet  Google Scholar 

  23. M. Verriere, D. Regnier, Front. Phys. 8 (2020)

  24. D. Bohm, D. Pines, Phys. Rev. 82(5), 625 (1951)

    ADS  MathSciNet  Google Scholar 

  25. H. Ehrenreich, H. Morrel Cohen, Phys. Rev. 115(4), 786 (1959)

    ADS  MathSciNet  Google Scholar 

  26. J. Sawicki, Nucl. Phys. 23, 285–295 (1961)

    Google Scholar 

  27. J. Sawicki, T. Soda, Nucl. Phys. 28(2), 270 (1961)

    Google Scholar 

  28. J. Sawicki, Phys. Rev. 126(6), 2231 (1962)

    ADS  MathSciNet  Google Scholar 

  29. D.J. Rowe, Rev. Mod. Phys. 40(1), 153 (1968)

    ADS  Google Scholar 

  30. W.R. Johnson, C.D. Lin, Phys. Rev. A 14(2), 565 (1976)

    ADS  Google Scholar 

  31. W.R. Johnson et al., Phys. Scr. 21(3), 409 (1980)

    ADS  Google Scholar 

  32. P. Shorer, A. Dalgarno, Phys. Scr. 21(3), 432 (1980)

    ADS  Google Scholar 

  33. T. Nakatsukasa, T. Inakura, K. Yabana, Phys. Rev. C 76(2), 024318 (2007)

    ADS  Google Scholar 

  34. P. Avogadro, T. Nakatsukasa, Phys. Rev. C 84(1), 014314 (2011)

    ADS  Google Scholar 

  35. M. Stoitsov et al., Phys. Rev. C 84(4), 041305 (2011)

    ADS  Google Scholar 

  36. T. Nikšić et al., Phys. Rev. C 88(4), 044327 (2013)

    ADS  Google Scholar 

  37. J. Ha et al., Phys. Rev. C 101, 044311 (2020)

    ADS  Google Scholar 

  38. R. Rodriguez-Guzman, P. Sarrigurena, L.M. Robledo, S. Perez-Martin, Phys. Lett. B 691, 202 (2010)

  39. M. Zielinska et al., Acta Phys. Pol. B 36, 1289 (2005)

    ADS  Google Scholar 

  40. K. Wrzosek-Lipska et al., Int. J. Mod. Phys. E 20, 443 (2011)

    ADS  Google Scholar 

  41. Y. El Bassem, M. El Adri, A. El Batoul, M. Oulne, Nucl. Phys. A 122831 (2024)

  42. G. Colo, D. Gambacurta, W. Kleinig, J. Kvasil, V.O. Nesterenko, A. Pastore, Phys. Lett. B 811, 135940 (2020)

    Google Scholar 

  43. Y.K. Gupta et al., Phys. Lett. B 760, 482 (2016)

    ADS  Google Scholar 

  44. Y.K. Gupta et al., Phys. Rev. C 97, 064323 (2018)

    ADS  Google Scholar 

  45. Y.K. Gupta et al., Phys. Rev. C 93(4), 044324 (2016)

    ADS  Google Scholar 

  46. M. Vandebrouck et al., Phys. Rev. Lett. 113(3), 032504 (2014)

    ADS  Google Scholar 

  47. D.H. Youngblood, Y.W. Lui, H.L. Clark, Phys. Rev. C 65(3), 034302 (2002)

    ADS  Google Scholar 

  48. D.S. Delion et al., Phys. Rev. C 85(6), 064306 (2012)

    ADS  Google Scholar 

  49. Y. Kanada-En’yo, Y. Shikata, Phys. Rev. C 100(1), 014301 (2019)

    ADS  Google Scholar 

  50. M. Chernykh et al., Phys. Rev. Lett. 98(3), 032501 (2007)

    ADS  Google Scholar 

  51. J. Kvasil, V.O. Nesterenko, A. Repko, W. Kleinig, P.-G. Reinhard, Phys. Rev. C 94, 064302 (2016)

    ADS  Google Scholar 

  52. S. Peru, H. Goutte, Phys. Rev. C 77, 044313 (2008)

    ADS  Google Scholar 

  53. V.O. Nesterenko, W. Kleinig, J. Kvasil, P. Vesely, P.G. Reinhard, D.S. Dolci, Phys. Rev. C 74, 064306 (2006)

    ADS  Google Scholar 

  54. D. Pena Arteaga, E. Khan, P. Ring, Phys. Rev. C 79, 034311 (2009)

    ADS  Google Scholar 

  55. E. Litvinova, Phys. Rev. C 107, L041302 (2023)

    ADS  Google Scholar 

  56. E. Litvinova, Y. Zhang, Phys. Rev. C 106, 064316 (2022)

    ADS  Google Scholar 

  57. K. Washiyama, T. Nakatsulasa, Phys. Rev. C 96, 041304(R) (2017)

    ADS  Google Scholar 

  58. Y. Shi, P.D. Stevenson, Chin. Phys. C 47, 034105 (2023)

    ADS  Google Scholar 

  59. A. Bjelčić, T. Nikšić, Comput. Phys. Commun. 253, 107184 (2020)

    MathSciNet  Google Scholar 

  60. T. Nikšić, N. Paar, D. Vretenar, P. Ring, Comput. Phys. Commun. 185, 1808–1821 (2014)

    ADS  Google Scholar 

  61. P. Ring, P. Schuck, The Nuclear Many-Body Problem

  62. J.G. Valatin, Phys. Rev. 122, 1012 (1961)

    ADS  MathSciNet  Google Scholar 

  63. M. El Adri, M. Oulne, Eur. Phys. J. Plus 135, 268 (2020)

    Google Scholar 

  64. Y. El Bassem, M. Oulne, Nucl. Phys. A 987, 16 (2019)

    ADS  Google Scholar 

  65. M. El Adri, M. Oulne, Int. J. Mod. Phys. E 29(12), 2050089 (2020)

    Google Scholar 

  66. G.A. Lalazissis, T. Nikšić, D. Vretenar, P. Ring, Phys. Rev. C 71, 024312 (2005)

    ADS  Google Scholar 

  67. Y. Tian, Z.Y. Ma, P. Ring, Phys. Lett. B 676, 44 (2009)

    ADS  Google Scholar 

  68. K. Howard et al., Phys. Lett. B 807, 135608 (2020). (Springer, Berlin, 2004)

  69. D.L. Hill, J.A. Wheeler, Phys. Rev. 89, 1102 (1953)

    ADS  Google Scholar 

  70. H. Abusara, S. Ahmad, Phys. Rev. C 95, 054302 (2017)

    ADS  Google Scholar 

  71. J. **ang et al., Nucl. Phys. A 873 (2012)

  72. K. Nomura, R. Rodriguez-Guzman, L.M. Robledo, Phys. Rev. C 94, 044314 (2016)

    ADS  Google Scholar 

  73. K. Howard, (2020). ar**v:2004.02362v1 [nucl-exp]

  74. M. El Adri, Y. El Bassem, A. El Batoul, M. Oulne, Eur. Phys. J. Plus 139(1), 75 (2024)

    Google Scholar 

  75. K. Yoshida, Phys. Rev. C 82, 034324 (2010)

    ADS  Google Scholar 

  76. F. Mercier, J.-P. Ebran, E. Khan, Phys. Rev. C 105, 034343 (2022)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. El Adri.

Ethics declarations

Code Availability Statement

This manuscript has no associated code/software. [Authors’ comment: No relevant code or software was generated during the course of the study.]

Additional information

Communicated by Takashi Nakatsukasa.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Adri, M., El Bassem, Y., El Batoul, A. et al. Shape isomeric states effects on the giant monopole resonances in even-even molybdenum isotopes. Eur. Phys. J. A 60, 110 (2024). https://doi.org/10.1140/epja/s10050-024-01321-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-024-01321-7

Navigation