Log in

Effects of dilute neutron matter on the neutron star crust equation of state

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

We develop a compressible liquid-drop model to describe the crust of neutron stars for which the role of the nuclear clusters, the neutron gas, and the electrons are clearly identified. The novelty relies on the contribution of the neutron gas, which is qualitatively adjusted to reproduce ‘ab initio’ predictions in dilute neutron matter. We relate the properties of dilute neutron matter to the ones of neutron stars crust and we compare the mean-field approximation to an improved approach that better describes dilute neutron matter1. The latter is quite sensitive to the unitary limit, a universal feature of Fermi systems having a large value of the scattering length and a small interaction range. While the impact of the accurate description of dilute neutron matter is important in uniform matter (up to 30% corrections with respect to a mean-field calculations), we find a reduction of this impact in the context of the crust of neutron stars due to the additional matter components (nuclear clusters and electrons). In agreement with our previous works, dilute neutron matter is however a necessary ingredient for accurate predictions of the properties of the crust of neutron stars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability Statement

The data created in this work and used for the figures of this manuscript is included as electronic supplementary material.

Notes

  1. This work was a matter of many discussions with Peter Schuck, who had a deep interest in correlated many-body systems and their application in the understanding of the properties of neutron stars.

References

  1. J. Carlson, S.Y. Chang, V.R. Pandharipande, K.E. Schmidt, Phys. Rev. Lett. 91, 050401 (2003). https://doi.org/10.1103/PhysRevLett.91.050401

    Article  ADS  Google Scholar 

  2. S. Gandolfi, A. Gezerlis, J. Carlson, Annu. Rev. Nucl. Part. Sci. 65(1), 303 (2015). https://doi.org/10.1146/annurev-nucl-102014-021957

    Article  ADS  Google Scholar 

  3. G.A. Baker, Phys. Rev. C 60, 054311 (1999). https://doi.org/10.1103/PhysRevC.60.054311

    Article  ADS  Google Scholar 

  4. G.A. Baker, Int. J. Mod. Phys. B 15(10n11), 1314 (2001). https://doi.org/10.1142/S0217979201005775

    Article  ADS  Google Scholar 

  5. C. Lobo, I. Carusotto, S. Giorgini, A. Recati, S. Stringari, Phys. Rev. Lett. 97, 100405 (2006). https://doi.org/10.1103/PhysRevLett.97.100405

    Article  ADS  Google Scholar 

  6. S. Tan, Ann. Phys. 323(12), 2971 (2008). https://doi.org/10.1016/j.aop.2008.03.005https://www.sciencedirect.com/science/article/pii/S0003491608000432

  7. N. Navon, S. Nascimbène, F. Chevy, C. Salomon, Science 1187582 (2010). https://doi.org/10.1126/science.1187582. https://pubmed.ncbi.nlm.nih.gov/20395472/

  8. E.D. Kuhnle, H. Hu, X.J. Liu, P. Dyke, M. Mark, P.D. Drummond, P. Hannaford, C.J. Vale, Phys. Rev. Lett. 105, 070402 (2010). https://doi.org/10.1103/PhysRevLett.105.070402

    Article  ADS  Google Scholar 

  9. M.J.H. Ku, A.T. Sommer, L.W. Cheuk, M.W. Zwierlein, Science 335(6068), 563 (2012). https://doi.org/10.1126/science.1214987

    Article  ADS  Google Scholar 

  10. M. Horikoshi, M. Koashi, H. Tajima, Y. Ohashi, M. Kuwata-Gonokami, Phys. Rev. X 7, 041004 (2017). https://doi.org/10.1103/PhysRevX.7.041004

    Article  Google Scholar 

  11. H. Tajima, P. van Wyk, R. Hanai, D. Kagamihara, D. Inotani, M. Horikoshi, Y. Ohashi, Phys. Rev. A 95, 043625 (2017). https://doi.org/10.1103/PhysRevA.95.043625

    Article  ADS  Google Scholar 

  12. P. van Wyk, H. Tajima, D. Inotani, A. Ohnishi, Y. Ohashi, Phys. Rev. A 97, 013601 (2018). https://doi.org/10.1103/PhysRevA.97.013601

    Article  ADS  Google Scholar 

  13. M. Horikoshi, M. Kuwata-Gonokami, Int. J. Modern Phys. E 28(01n02), 1930001 (2019). https://doi.org/10.1142/S0218301319300017

    Article  ADS  Google Scholar 

  14. A. Gezerlis, J. Carlson, Phys. Rev. C 77, 032801 (2008). https://doi.org/10.1103/PhysRevC.77.032801

    Article  ADS  Google Scholar 

  15. I. Vidaña, Front. Phys. (2021). https://doi.org/10.3389/fphy.2021.660622

    Article  Google Scholar 

  16. A. Gezerlis, J. Carlson, Phys. Rev. C 81, 025803 (2010). https://doi.org/10.1103/PhysRevC.81.025803

    Article  ADS  Google Scholar 

  17. S. Gandolfi, G. Palkanoglou, J. Carlson, A. Gezerlis, K.E. Schmidt, Condens. Matter (2022). https://doi.org/10.3390/condmat7010019

    Article  Google Scholar 

  18. V. Palaniappan, S. Ramanan, M. Urban, Phys. Rev. C 107, 025804 (2023). https://doi.org/10.1103/PhysRevC.107.025804

    Article  ADS  Google Scholar 

  19. C. Drischler, K. Hebeler, A. Schwenk, Phys. Rev. C 93, 054314 (2016). https://doi.org/10.1103/PhysRevC.93.054314

    Article  ADS  Google Scholar 

  20. C. Drischler, R.J. Furnstahl, J.A. Melendez, D.R. Phillips, Phys. Rev. Lett. 125(20), 202702 (2020). https://doi.org/10.1103/PhysRevLett.125.202702

    Article  ADS  Google Scholar 

  21. G. Grams, J. Margueron, R. Somasundaram, S. Reddy, Eur. Phys. J. A 58, 56 (2022). https://doi.org/10.1140/epja/s10050-022-00706-w

    Article  ADS  Google Scholar 

  22. T.D. Lee, C.N. Yang, Phys. Rev. 105, 1119 (1957). https://doi.org/10.1103/PhysRev.105.1119

    Article  ADS  Google Scholar 

  23. D. Lacroix, Phys. Rev. A 94, 043614 (2016). https://doi.org/10.1103/PhysRevA.94.043614

    Article  ADS  Google Scholar 

  24. M. Matsuo, Phys. Rev. C 73, 044309 (2006). https://doi.org/10.1103/PhysRevC.73.044309

    Article  ADS  Google Scholar 

  25. J. Margueron, H. Sagawa, K. Hagino, Phys. Rev. C 76, 064316 (2007). https://doi.org/10.1103/PhysRevC.76.064316

    Article  ADS  Google Scholar 

  26. L.G. Cao, U. Lombardo, P. Schuck, Phys. Rev. C 74, 064301 (2006). https://doi.org/10.1103/PhysRevC.74.064301

    Article  ADS  Google Scholar 

  27. J. Bardeen, L.N. Cooper, J.R. Schrieffer, Phys. Rev. 108, 1175 (1957). https://doi.org/10.1103/PhysRev.108.1175

    Article  ADS  MathSciNet  Google Scholar 

  28. P. Nozières, S. Schmitt-Rink, J. Low Temp. Phys. 59, 195 (1985)

    Article  ADS  Google Scholar 

  29. A. Pastore, J. Margueron, P. Schuck, X. Viñas, Phys. Rev. C 88, 034314 (2013). https://doi.org/10.1103/PhysRevC.88.034314

  30. A. Pastore, P. Schuck, M. Urban, X. Viñas, J. Margueron, Phys. Rev. A 90, 043634 (2014). https://doi.org/10.1103/PhysRevA.90.043634

    Article  ADS  Google Scholar 

  31. P.G. de Gennes, Superconductivity of Metals and Alloys (W.A. Benjamin Editor, New York, 1966)

  32. J. Margueron, R. Hoffmann Casali, F. Gulminelli, Phys. Rev. C 97, 025806 (2018)

    Article  ADS  Google Scholar 

  33. R. Somasundaram, C. Drischler, I. Tews, J. Margueron, Phys. Rev. C 103, 045803 (2021). https://doi.org/10.1103/PhysRevC.103.045803

    Article  ADS  Google Scholar 

  34. G. Grams, J. Margueron, R. Somasundaram, S. Reddy, Few-Body Syst. 62, 116 (2021). https://doi.org/10.1007/s00601-021-01697-y

    Article  ADS  Google Scholar 

  35. G. Grams, R. Somasundaram, J. Margueron, S. Reddy, Phys. Rev. C 105, 035806 (2022). https://doi.org/10.1103/PhysRevC.105.035806

    Article  ADS  Google Scholar 

  36. C.H. Yang, J. Clark, Nucl. Phys. A 174(1), 49 (1971). https://doi.org/10.1016/0375-9474(71)91002-5

    Article  ADS  Google Scholar 

  37. L.P. Gor’kov, T.K. Melik-Barkhudarov, Soviet J. Exp. Theor. Phys. 13, 1018 (1961)

    Google Scholar 

  38. H. Heiselberg, C.J. Pethick, H. Smith, L. Viverit, Phys. Rev. Lett. 85, 2418 (2000). https://doi.org/10.1103/PhysRevLett.85.2418

    Article  ADS  Google Scholar 

  39. P. Papakonstantinou, J. Margueron, F. Gulminelli, A.R. Raduta, Phys. Rev. C 88, 045805 (2013). https://doi.org/10.1103/PhysRevC.88.045805

    Article  ADS  Google Scholar 

  40. S.K. Gupta, M. Urban. Effect of the equation of state for dilute neutron matter on the composition of the inner crust of neutron stars (2023)

  41. J. Negele, D. Vautherin, Nucl. Phys. A 207(2), 298 (1973). https://doi.org/10.1016/0375-9474(73)90349-7

    Article  ADS  Google Scholar 

  42. J.M. Pearson, N. Chamel, A.Y. Potekhin, A.F. Fantina, C. Ducoin, A.K. Dutta, S. Goriely, MNRAS 481(3), 2994 (2018). https://doi.org/10.1093/mnras/sty2413

    Article  ADS  Google Scholar 

  43. F. Douchin, P. Haensel, J. Meyer, Nucl. Phys. A 665, 419 (2000). https://doi.org/10.1016/S0375-9474(99)00397-8

    Article  ADS  Google Scholar 

  44. G. Grams, J. Margueron, R. Somasundaram, N. Chamel, S. Goriely, J. Phys: Conf. Ser. 2340(1), 012030 (2022). https://doi.org/10.1088/1742-6596/2340/1/012030

    Article  Google Scholar 

  45. C. Monrozeau, J. Margueron, N. Sandulescu, Phys. Rev. C 75, 065807 (2007). https://doi.org/10.1103/PhysRevC.75.065807

    Article  ADS  Google Scholar 

  46. N. Chamel, D. Page, S. Reddy, Phys. Rev. C 87, 035803 (2013). https://doi.org/10.1103/PhysRevC.87.035803

    Article  ADS  Google Scholar 

  47. N. Andersson, Universe. (2021). https://doi.org/10.3390/universe7010017

    Article  Google Scholar 

  48. V. Graber, A. Cumming, N. Andersson, Astrophys. J. 865(1), 23 (2018). https://doi.org/10.3847/1538-4357/aad776

    Article  ADS  Google Scholar 

  49. R.I. Epstein, Phys. Rep. 163(1), 155 (1988). https://doi.org/10.1016/0370-1573(88)90042-7

    Article  ADS  Google Scholar 

  50. Q.C. Li, Y.P. Yang, F.Y. Wang, K. Xu, Z.G. Dai, Mon. Not. R. Astron. Soc. 517(3), 4612 (2022). https://doi.org/10.1093/mnras/stac2596

    Article  ADS  Google Scholar 

  51. S. Burrello, M. Grasso, Eur. Phys. J. A 58, 22 (2022). https://doi.org/10.1140/epja/s10050-022-00665-2

    Article  ADS  Google Scholar 

  52. J. Keller, C. Wellenhofer, K. Hebeler, A. Schwenk, Phys. Rev. C 103, 055806 (2021). https://doi.org/10.1103/PhysRevC.103.055806

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank G. Coló, S. Gandolfi and I. Vidaña for very interesting exchanges during the completion of this work. GG is supported by the Fonds de la Recherche Scientifique (F.R.S.-FNRS) and the Fonds Wetenschappelijk Onderzoek - Vlaanderen (FWO) under the EOS Projects nr O022818F and O000422F. JM is supported by CNRS-IN2P3 MAC masterproject and benefits from PHAROS COST Action MP16214, as well as from the LABEX Lyon Institute of Origins (ANR-10-LABX-0066).

Author information

Authors and Affiliations

Authors

Contributions

G.G. performed most of the numerical analysis. All authors contributed to the preparation and revision of the manuscript.

Corresponding author

Correspondence to G. Grams.

Additional information

Communicated by David Blaschke.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (zip 7905 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grams, G., Margueron, J. Effects of dilute neutron matter on the neutron star crust equation of state. Eur. Phys. J. A 60, 90 (2024). https://doi.org/10.1140/epja/s10050-024-01309-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-024-01309-3

Navigation