Log in

On the relation between the soft and hard parts of the transverse momentum distribution

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Usually, the transverse momentum distribution is described by a sum of an exponential decay term plus a decreasing power like contribution representing the soft non-perturbative and hard perturbative QCD collisions, respectively. In this paper, we derive an analytical function that can describe the whole transverse momentum spectrum. This is obtained using a q-Gaussian distribution to describe the string tension fluctuations. The parameter q determines the departure of the thermal distribution as well as the minimum length that can be explored at high transverse momentum. We also show that the ratio between both scales only depends on the q parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited [Authors’ comment: The analyzed data was previously published in Refs. [14, 41–45].]

References

  1. A.A. Bylinkin, A.A. Rostovtsev, Nucl. Phys. B 888, 65 (2014). https://doi.org/10.1016/j.nuclphysb.2014.09.010

    Article  ADS  Google Scholar 

  2. A.A. Bylinkin, D.E. Kharzeev, A.A. Rostovtsev, Int. J. Mod. Phys. E 23, 1450083 (2014). https://doi.org/10.1142/S0218301314500839

    Article  ADS  Google Scholar 

  3. A. Bialas, Phys. Lett. B 466, 301 (1999). https://doi.org/10.1016/S0370-2693(99)01159-4

    Article  ADS  Google Scholar 

  4. J. Dias de Deus, C. Pajares, Phys. Lett. B 642, 455 (2006). https://doi.org/10.1016/j.physletb.2006.10.018

    Article  ADS  Google Scholar 

  5. D. Kharzeev, K. Tuchin, Nucl. Phys. A 753, 316 (2005). https://doi.org/10.1016/j.nuclphysa.2005.03.001

    Article  ADS  Google Scholar 

  6. O. Costin, G.V. Dunne, Phys. Lett. B 808, 135627 (2020). https://doi.org/10.1016/j.physletb.2020.135627

    Article  MathSciNet  Google Scholar 

  7. P. Calabrese, J. Cardy, J. Stat. Mech. Theory E 2016, 064003 (2016). https://doi.org/10.1088/1742-5468/2016/06/064003

    Article  Google Scholar 

  8. J. Berges, S. Floerchinger, R. Venugopalan, Phys. Lett. B 778, 442 (2018). https://doi.org/10.1016/j.physletb.2018.01.068

    Article  ADS  Google Scholar 

  9. D.E. Kharzeev, E.M. Levin, Phys. Rev. D 95, 114008 (2017). https://doi.org/10.1103/PhysRevD.95.114008

    Article  ADS  Google Scholar 

  10. N. Armesto, F. Domínguez, A. Kovner, M. Lublinsky, V.V. Skokov, J. High Energy Phys. 2019, 25 (2019). https://doi.org/10.1007/JHEP05(2019)025

    Article  Google Scholar 

  11. E. Gotsman, E. Levin, Phys. Rev. D 102, 074008 (2020). https://doi.org/10.1103/PhysRevD.102.074008

    Article  MathSciNet  ADS  Google Scholar 

  12. Z. Tu, D.E. Kharzeev, T. Ullrich, Phys. Rev. Lett. 124, 062001 (2020). https://doi.org/10.1103/PhysRevLett.124.062001

    Article  ADS  Google Scholar 

  13. G.S. Ramos, M.V.T. Machado, Phys. Rev. D 101, 074040 (2020). https://doi.org/10.1103/PhysRevD.101.074040

    Article  ADS  Google Scholar 

  14. O.K. Baker, D.E. Kharzeev, Phys. Rev. D 98, 054007 (2018). https://doi.org/10.1103/PhysRevD.98.054007

    Article  ADS  Google Scholar 

  15. X. Feal, C. Pajares, R.A. Vazquez, Phys. Rev. C 99, 015205 (2019). https://doi.org/10.1103/PhysRevC.99.015205

    Article  ADS  Google Scholar 

  16. R. Bellwied, J. Phys. Conf. Ser. 1070, 012001 (2018). https://doi.org/10.1088/1742-6596/1070/1/012001

    Article  Google Scholar 

  17. X. Feal, C. Pajares, R.A. Vazquez, Phys. Rev. C 104, 044904 (2021). https://doi.org/10.1103/PhysRevC.104.044904

    Article  ADS  Google Scholar 

  18. J. Schwinger, Phys. Rev. 128, 2425 (1962). https://doi.org/10.1103/PhysRev.128.2425

    Article  MathSciNet  ADS  Google Scholar 

  19. C.-Y. Wong, Introduction to High-energy Heavy-ion Collisions (World scientific, Singapore, 1994)

    Book  Google Scholar 

  20. B. Andersson, The Lund Model, Cambridge Monographs on Particle Physics, Nuclear Physics and Cosmology (Cambridge University Press, Cambridge, 1998). https://doi.org/10.1017/CBO9780511524363

    Book  Google Scholar 

  21. A.A. Budini, Phys. Rev. E 91, 052113 (2015). https://doi.org/10.1103/PhysRevE.91.052113

    Article  MathSciNet  ADS  Google Scholar 

  22. C. Tsallis, D.J. Bukman, Phys. Rev. E 54, R2197 (1996). https://doi.org/10.1103/PhysRevE.54.R2197

    Article  ADS  Google Scholar 

  23. M. Bologna, C. Tsallis, P. Grigolini, Phys. Rev. E 62, 2213 (2000). https://doi.org/10.1103/PhysRevE.62.2213

    Article  ADS  Google Scholar 

  24. D. Prato, C. Tsallis, Phys. Rev. E 60, 2398 (1999). https://doi.org/10.1103/PhysRevE.60.2398

    Article  ADS  Google Scholar 

  25. C. Tsallis, S.V.F. Levy, A.M.C. Souza, R. Maynard, Phys. Rev. Lett. 75, 3589 (1995). https://doi.org/10.1103/PhysRevLett.75.3589

    Article  MathSciNet  ADS  Google Scholar 

  26. A. Rodríguez, V. Schwämmle, C. Tsallis, J. Stat. Mech. Theory E 2008, P09006 (2008). https://doi.org/10.1088/1742-5468/2008/09/P09006

    Article  Google Scholar 

  27. R. Hanel, S. Thurner, C. Tsallis, Eur. Phys. J. B 72, 263 (2009). https://doi.org/10.1140/epjb/e2009-00330-1

    Article  ADS  Google Scholar 

  28. A.A. Budini, Phys. Rev. E 86, 011109 (2012). https://doi.org/10.1103/PhysRevE.86.011109

    Article  ADS  Google Scholar 

  29. P. Jizba, G. Lambiase, G.G. Luciano, L. Petruzziello, Phys. Rev. D 105, L121501 (2022). https://doi.org/10.1103/PhysRevD.105.L121501

    Article  ADS  Google Scholar 

  30. G. Wilk, Z. Wlodarczyk, Eur. Phys. J. A 40, 299 (2009). https://doi.org/10.1140/epja/i2009-10803-9

    Article  ADS  Google Scholar 

  31. T.S. Biró, G. Purcsel, K. Ürmössy, Eur. Phys. J. A 40, 325 (2009). https://doi.org/10.1140/epja/i2009-10806-6

    Article  ADS  Google Scholar 

  32. J. Cleymans, G. Lykasov, A. Parvan, A. Sorin, O. Teryaev, D. Worku, Phys. Lett. B 723, 351 (2013). https://doi.org/10.1016/j.physletb.2013.05.029

    Article  ADS  Google Scholar 

  33. W.C. Zhang, C.B. Yang, J. Phys. G Nucl. Part. 41, 105006 (2014). https://doi.org/10.1088/0954-3899/41/10/105006

    Article  ADS  Google Scholar 

  34. C.-Y. Wong, G. Wilk, L.J.L. Cirto, C. Tsallis, Phys. Rev. D 91, 114027 (2015). https://doi.org/10.1103/PhysRevD.91.114027

    Article  ADS  Google Scholar 

  35. W.C. Zhang, J. Phys. G Nucl. Part. Phys. 43, 015003 (2015). https://doi.org/10.1088/0954-3899/43/1/015003

    Article  ADS  Google Scholar 

  36. K. Shen, G.G. Barnaföldi, T.S. Biró, Eur. Phys. J. A 55, 126 (2019). https://doi.org/10.1140/epja/i2019-12813-4

    Article  ADS  Google Scholar 

  37. G. Bíró, G.G. Barnaföldi, T.S. Biró, J. Phys. G Nucl. Part. 47, 105002 (2020). https://doi.org/10.1088/1361-6471/ab8dcb

    Article  ADS  Google Scholar 

  38. L.Q. Rocha, E. Megías, L.A. Trevisan, K.K. Olimov, F. Liu, A. Deppman, Physics 4, 659 (2022). https://doi.org/10.3390/physics4020044

    Article  ADS  Google Scholar 

  39. X.-H. Zhang, Y.-Q. Gao, F.-H. Liu, K.K. Olimov, Adv. High Ener. Phys. 2022, 7499093 (2022). https://doi.org/10.1155/2022/7499093

    Article  Google Scholar 

  40. G.B. Arfken, Mathematical Methods for Physicists (Academic Press, California, 1995), pp.802–803. (Chap. 13)

    Google Scholar 

  41. STAR Collaboration, Phys. Rev. Lett. 91, 172302 (2003). https://doi.org/10.1103/PhysRevLett.91.172302

    Article  Google Scholar 

  42. ALICE Collaboration, J. High Energy Phys. 2018, 13 (2018). https://doi.org/10.1007/JHEP11(2018)013

    Article  Google Scholar 

  43. ALICE Collaboration, Phys. Lett. B 753, 319 (2015). https://doi.org/10.1016/j.physletb.2015.12.030

    Article  ADS  Google Scholar 

  44. ALICE Collaboration, Eur. Phys. J. C 73, 2662 (2013). https://doi.org/10.1140/epjc/s10052-013-2662-9

    Article  ADS  Google Scholar 

  45. ALICE Collaboration, Eur. Phys. J. C 73, 2456 (2013). https://doi.org/10.1140/epjc/s10052-013-2456-0

    Article  ADS  Google Scholar 

  46. A. Kempf, G. Mangano, R.B. Mann, Phys. Rev. D 52, 1108 (1995). https://doi.org/10.1103/PhysRevD.52.1108

    Article  MathSciNet  ADS  Google Scholar 

  47. J. Magueijo, L. Smolin, Phys. Rev. Lett. 88, 190403 (2002). https://doi.org/10.1103/PhysRevLett.88.190403

    Article  ADS  Google Scholar 

  48. H. Shababi, K. Ourabah, Eur. Phys. J. Plus 135, 697 (2020). https://doi.org/10.1140/epjp/s13360-020-00726-9

    Article  Google Scholar 

  49. G.G. Luciano, Eur. Phys. J. C 81, 672 (2021). https://doi.org/10.1140/epjc/s10052-021-09486-x

    Article  ADS  Google Scholar 

  50. M. Braun, J. Dias de Deus, A. Hirsch, C. Pajares, R. Scharenberg, B. Srivastava, Phys. Rep. 599, 1 (2015). https://doi.org/10.1016/j.physrep.2015.09.003

    Article  MathSciNet  ADS  Google Scholar 

  51. I. Bautista, C. Pajares, J.E. Ramírez, Rev. Mex. Fis. 65, 197 (2019). https://doi.org/10.31349/RevMexFis.65.197

    Article  Google Scholar 

  52. M.A. Braun, C. Pajares, Eur. Phys. J. C 16, 349 (2000). https://doi.org/10.1007/s100520050027

    Article  ADS  Google Scholar 

  53. M.A. Braun, C. Pajares, Phys. Rev. Lett. 85, 4864 (2000). https://doi.org/10.1103/PhysRevLett.85.4864

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank X. Feal and R. A. Vázquez, who participated in the early stages of this study. C. P. thanks the grant Maria de Maeztu Unit of Excellence under the project MDM-2016 0682 of the Ministry of Science and Innovation of Spain. This work has been funded by the projects PID2020-119632GB-100 of the Spanish Research Agency, Centro Singular de Galicia 2019–2022 of Xunta de Galicia, and the ERDF of the European Union. J.E.R. acknowledges financial support from Consejo Nacional de Humanidades, Ciencias y Tecnologías under a postdoctoral fellowship (grant number 289198).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. E. Ramírez.

Additional information

Communicated by Tamas Biro.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pajares, C., Ramírez, J.E. On the relation between the soft and hard parts of the transverse momentum distribution. Eur. Phys. J. A 59, 250 (2023). https://doi.org/10.1140/epja/s10050-023-01170-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-023-01170-w

Navigation