Log in

Mass distribution in the quasi-mono-energetic neutron-induced fission of 232Th

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

The cumulative yields of various fission products in 232Th(n, f) with average neutron energies of 6.35, 8.53 and 10.09 MeV have been determined using an off-line \(\gamma\)-ray spectrometric technique. The neutron beam was produced from the 7Li(p, n) reaction. From the cumulative fission yields, the mass chain yields were obtained by using charge distribution correction of medium energy. The peak-to-valley (\(P/V\)) ratio, the average value of light mass (\(\langle A_{L}\rangle\)), heavy mass (\(\langle A_{H} \rangle\)) and the average number of neutrons (\(\langle\nu \rangle\)) at the three different neutron energies of the present work and at other energies from the literature in the 232Th(n, f) reaction were obtained from the mass yield data. The present and the existing literature data in the 232Th(n, f) reaction at various excitation energies were compared with similar data in the 238U(n, f) reaction. The fine structure in the mass yield distribution was interpreted from the point of nuclear structure effect such as shell closure proximity and even-odd effect. The role of standard I and standard II asymmetric mode of fission was discussed. The different types of mass-yield distributions between 232Th(n, f) and 238U(n, f) reactions were explained from different types of the potential energy between the two fissioning systems. The role of excitation energy was also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.F. Mughabghab, M. Diveenam, N.E. Holden, Neutron Resonance Parameters and Thermal Cross Sections, Vol. I (Academic Press, New York, 1981)

  2. R. Vandenbosch, J.R. Huizenga, Nuclear Fission (Academic, New York, 1973)

  3. C. Wagemans, The Nuclear Fission Process (CRC, London, 1990)

  4. E.A.C. Crouch, At. Data Nucl. Data Tables 19, 417 (1977)

    Article  ADS  Google Scholar 

  5. B.F. Rider, Compilation of fission products yields, NEDO, 12154 3c ENDF-327, Valecicecitos Nuclear Centre (1981)

  6. J.R. England, B.F. Rider, Evaluation and compilation of fission products yields, ENDF/BVI (1989, 1992)

  7. M. James, R. Mills, Neutron fission products yields, UKFY2 (1991) and JEF-2.2 (1993)

  8. A.C. Wahl, At. Data Nucl. Data Tables 39, 1 (1988)

    Article  ADS  Google Scholar 

  9. Fast Reactors and Accelerator Driven Systems Knowledge Base, IAEA-TECDOC-1319: Thorium fuel utilization: Options and Trends

  10. L. Mathieu, Proportion for a very simple Thorium Molten Salt reactor, in Proceedings of the Global International Conference, Paper No. 428 (Tsukuba, Japan, 2005)

  11. A. Nuttin, D. Heuer, A. Biliebaud, R. Brissot, C. Le Brun, E. Liatard, J.M. Loiseaux, L. Mathieu, O. Meplan, E. Merle-Lucotte, H. Nifenecker, F. Perdu, S. David, Proc. Nucl. Energy 46, 77 (2005)

    Article  Google Scholar 

  12. T.R. Allen, D.C. Crawford, Sci. Technol. Nucl. Install. 2007, 97486 (2007)

    Article  Google Scholar 

  13. Annual Project Status Report 2000, MIT-ANP-PR-071, INEFL/EXT-2009-00994

  14. R.K. Sinha, A. Kakodkar, Nucl. Eng. Des. 236, 683 (2006)

    Article  Google Scholar 

  15. S. Ganesan, Creation of Indian experimental benchmarks for thorium fuel cycle, IAEA Coordinated research project on ``Evaluated data for thorium--uranium fuel cycle'', in Third Research Co-ordination Meeting, 30 January to 2 February 2006, Vienna, Austria, INDC (NDS)-0494 (2006)

  16. F. Carminati, R. Klapisch, J.P. Revol, J.A. Rubia, C. Rubia, CERN/AT/93-49 (ET) 1993

  17. C. Rubia, J.A. Rubio, S. Buono, F. Carminati, N. Fietier, J. Galvez, C. Geles, Y. Kadi, R. Klapisch, P. Mandrilion, J.P. Revol, Ch. Roche, CERN/AT/95-44 (ET) 1995, CERN/AT/95-53(ET) 1995, CERN/LHC/96-01 (LET) 1996, CERN/LHC/97-01 (EET) 1997

  18. C.D. Bowman, AIP Conf. Proc. 346, 22 (1994)

    Article  ADS  Google Scholar 

  19. Accelerator Driven Systems: Energy Generation and Transmutation of Nuclear Waste, Status report, IAEA, Vienna, IAEA-TECDO-985, Nov. 1997

  20. C.D. Bowman, Annu. Rev. Nucl. Part Sci. 48, 505 (1998)

    Article  ADS  Google Scholar 

  21. S. Ganesan, Pramana J. Phys. 68, 257 (2007)

    Article  ADS  Google Scholar 

  22. K.-H. Schmidt, S. Steinhauser, C. Bockstiegel, A. Rewe, A. Heinz, A.R. Junghans, J. Benlliure, H.-G. Clerc, M. de Jong, J. Muller, M. Pfutzner, B. Voss, Nucl. Phys. A 665, 221 (2000)

    Article  ADS  Google Scholar 

  23. S. Steinhauser, J. Benlliure, C. Bockstiegel, H.-G.Clerc, A. Heinz, A. Rewe, M. de Jong, A.R. Junghans, J. Muller, M. Pfutzner, K.-H. Schmidt, Nucl. Phys. A 634, 89 (1998)

    Article  ADS  Google Scholar 

  24. J. Benlliure, A.R. Junghans, K.-H. Schmidt, Eur. Phys. J. A 13, 93 (2002)

    ADS  Google Scholar 

  25. R.H. Iyer, C.K. Mathews, N. Ravindran, K. Rengan, D.V. Singh, M.V. Ramaniah, H.D. Sharma, J. Inorg. Nucl. Chem. 25, 465 (1963)

    Article  Google Scholar 

  26. H.N. Erten, A. Grutter, E. Rossler, H.R. von Gunten, Nucl. Sci. Eng. 79, 167 (1981)

    Google Scholar 

  27. H. Naik, A.G.C. Nair, P.C. Kalsi, A.K. Pandey, R.J. Singh, A. Ramaswami, R.H. Iyer, Radiochim. Acta 75, 69 (1996)

    Google Scholar 

  28. R.H. Iyer, H. Naik, A.K. Pandey, P.C. Kalsi, R.J. Singh, A. Ramaswami, A.G.C. Nair, Nucl. Sci. Eng. 135, 227 (2000)

    Google Scholar 

  29. A. Turkevich, J.B. Nidday, Phys. Rev. 84, 52 (1951)

    Article  ADS  Google Scholar 

  30. A. Turkevisch, J.B. Nidday, A. Tompkins, Phys. Rev. 89, 552 (1953)

    Article  ADS  Google Scholar 

  31. K.M. Broom, Phys. Rev. B 133, 874 (1964)

    Article  ADS  Google Scholar 

  32. G.P. Ford, R.B. Leachman, Phys. Rev. B 137, 826 (1965)

    Article  ADS  Google Scholar 

  33. R. Ganapathy, P.K. Kuroda, J. Inorg. Nucl. Chem. 28, 2071 (1966)

    Article  Google Scholar 

  34. Tin Mo, M.N. Rao, J. Inorg. Nucl. Chem. 30, 345 (1968)

    Article  Google Scholar 

  35. M. Thin, M.N. Rao, P.K. Kurdo, J. Inorg. Nucl. Chem. 30, 1145 (1968)

    Article  Google Scholar 

  36. A.I. Sagachev, V.G. Vorobeieva, B.D. Kuzminov, V.B. Mikhaylov, Z. Tarsko, Sov. J. Nucl. Phys. 7, 475 (1968)

    Google Scholar 

  37. S.J. Lyle, J. Sellears, Radiochim. Acta 12, 43 (1969)

    Google Scholar 

  38. L.H. Gevaert, R.E. Jervis, H.D. Sharma, Can. J. Chem. 48, 641 (1970)

    Article  Google Scholar 

  39. J. Blachot, L.C. Carraz, P. Cavallini, E. Monnand, F. Schusslor, J. Radioanal. Nucl. Chem. 7, 309 (1971)

    Article  Google Scholar 

  40. D.L. Swindle, D.T. Moore, J.N. Beck, P.K. Kuroda, J. Inorg. Nucl. Chem. 33, 3643 (1971)

    Article  Google Scholar 

  41. W. Holubarsch, L. Pfeiffer, F. Gonnenwein, Nucl. Phys. A 171, 631 (1971)

    Article  ADS  Google Scholar 

  42. S.A. Rao, Phys. Rev. 5, 171 (1972)

    Article  ADS  Google Scholar 

  43. J.P. Bocquet, R. Brissot, J. Crancon, A. Moussa, Nucl. Phys. A 189, 556 (1972)

    Article  ADS  Google Scholar 

  44. S.M. Dubroviva, V.I. Nogorodtseva, L.N. Morozov, V.A. Pchevin, L.V. Chistyakov, V.A. Schigin, V.M. Shubko, Yad. Fiz. 17, 1470 (1973)

    Google Scholar 

  45. J. Trochon, H.A. Yehia, F. Brisard, Y. Pranal, Nucl. Phys. A 318, 63 (1979)

    Article  ADS  Google Scholar 

  46. L.E. Glendenin, J.E. Gindler, I. Ahmad, D.J. Henderson, J.W. Meadows, Phys. Rev. C 22, 152 (1980)

    Article  ADS  Google Scholar 

  47. S.T. Lam, L.L. Yu, H.W. Fielding, W.K. Dawson, G.C. Neilson, Phys. Rev. C 28, 1212 (1983)

    Article  ADS  Google Scholar 

  48. A.E. Richoortson, H.L. Wright, J.L. Meason, J.R. Smith, Nucl. Sci. Eng. 94, 413 (1986)

    Article  Google Scholar 

  49. Li Wen-**n, Sun Tong-Yu, Sun **u-Hua, Fu Min, Dong Tian-Rong, Zheng Man-Jiao, High Energy Phys. Nucl. Phys. 11, 376 (1987)

    Google Scholar 

  50. Sun Tong-Yu, Li Wen-**n, Dong Tian-Rong, Fu Min, High Energy Phys. Nucl. Phys. 12, 221 (1988)

    Google Scholar 

  51. V.D. Simutkin, I.V. Ryzhov, G.A. Tutin, L.A. Vaishnene, J. Blongren, S. Pomp, M. Oesterlung, P. Andersson, R. Bevilacqua, J.P. Menlders, R. Prieels, AIP Conf. Proc. 1175, 393 (2010)

    ADS  Google Scholar 

  52. P.M. Prajapati, H. Naik, S. Mukherjee, S.V. Suryanarayana, B.S. Shivashankar, R. Crasta, V.K. Mulik, K.C. Jagadeesan, S.V. Thakre, A. Goswami, Nucl. Sci. Eng. 176, 1 (2014)

    Article  Google Scholar 

  53. I.V. Ryzhov, S.G. Yavshits, G.A. Tutin, N.V. Kovalev, A.V. Saulski, N.A. Kudryashev, A.V. Saulski, N.A. Kudryashev, M.S. Onegin, L.A. Vaishnene, Yu.A. Gavrikov, O.T. Grudzevich, V.D. Simutkin, S. Pomp, J. Blomgren, M. Osterlund, P. Andersson, R. Bevilacqua, J. Meulders, R. Prieels, Phys. Rev. C 83, 054603 (2011)

    Article  ADS  Google Scholar 

  54. K.M. Brown, Phys. Rev. 126, 627 (1962)

    Article  ADS  Google Scholar 

  55. M.P. Menon, P.K. Kurdo, J. Inorg. Nucl. Chem. 26, 40 (1964)

    Article  Google Scholar 

  56. N.L. Borisova, S.M. Dubrovina, V.I. Novgorodtseva, V.A. Pchelin, V.A. Shigin, V.M. Shubko, Sov. J. Nucl. Phys. 6, 331 (1968)

    Google Scholar 

  57. S.J. Lyle, J. Tillars, Radiochim. Acta 12, 43 (1969)

    Google Scholar 

  58. D.J. Gorman, R.H. Tomilson, Can. J. Chem. 46, 1663 (1968)

    Article  Google Scholar 

  59. S.J. Lyle, J. Sellear, Radiochim. Acta 12, 43 (1968)

    Google Scholar 

  60. S.J. Lyle, R. Wellum, Radiochim. Acta 13, 167 (1969)

    Google Scholar 

  61. S.G. Birgul, S.J. Lyle, R. Wellum, Radiochim. Acta 16, 104 (1971)

    Google Scholar 

  62. J.P. Bocquet, Nucl. Phys. 189, 556 (1972)

    Article  Google Scholar 

  63. D.R. Nethaway, B. Mendoza, Phys. Rev. C 6, 1821 (1972)

    Article  ADS  Google Scholar 

  64. D.R. Nethaway, B. Mendoza, Phys. Rev. C 6, 1827 (1972)

    Article  ADS  Google Scholar 

  65. J. Blachot, L.C. Carraz, P. Cavalini, C. Chauvin, A. Ferrieu, A. Moussa, J. Inorg. Nucl. Chem. 36, 495 (1974)

    Article  Google Scholar 

  66. J.T. Harvey, D.E. Adams, W.D. James, J.N. Beck, J.L. Meason, P.K. Kuroda, J. Inorg. Nucl. Chem. 37, 2243 (1975)

    Article  Google Scholar 

  67. D.E. Adams, W.D. James, J.N. Beck, P.K. Kuroda, J. Inorg. Nucl. Chem. 37, 419 (1975)

    Article  Google Scholar 

  68. M. Rajagopalan, H.S. Pruys, A. Grutter, E.A. Hermes, H.R. von Gunten, J. Inorg. Nucl. Chem. 38, 351 (1976)

    Article  Google Scholar 

  69. S. Daroczy, P. Raics, S. Nagy, L. Koever, I. Hamvas, E. Gorman, ATOMKI Kozl. 18, 317 (1976)

    Google Scholar 

  70. T.C. Chapman, G.A. Anzelon, G.C. Spitale, D.R. Nethaway, Phys. Rev. C 17, 1089 (1978)

    Article  ADS  Google Scholar 

  71. S. Nagy, K.F. Flynn, J.E. Gindler, J.W. Meadows, L.E. Glendenin, Phys. Rev. C 17, 163 (1978)

    Article  ADS  Google Scholar 

  72. L. We-**n, S. Tong-Yu, Z. Man-Jiao, D. Tian-Rong, S. **u-Hua, He Hua-Xue, Yu F. Hua-Kue, High Energy Phys. Nucl. Phys. 2, 9 (1980)

    Google Scholar 

  73. L. We-**n, S. Tong-Yu, Z. Man-Jiao, D. Tian-Rong, S. **u-Hua, He Hua-Xue, Yu F. Hua-Kue, High Energy Phys. Nucl. Phys. 5, 176 (1983)

    Google Scholar 

  74. L. Ze, Z. Chun-Hua, L. Cong-Gui, W. **u-Zhi, Q. Lim-Kun, C. Anzhi, L. Hui-Jung, Z. Su-**g, L. Yong-Hui, Ju Chang-**n, L. Da-Ming, T. Pei-Ja, M. Jiang-Chen, J. Ki-**ng, High Energy Phys. J. Nucl. Phys. 7, 97 (1985)

    Google Scholar 

  75. L. Cong-Gui, L. Hui-Jun, L. Yong-Hui, High Energy Phys. Nucl. Phys. 7, 235 (1985)

    Google Scholar 

  76. A. Afarideh, K.R. Annole, Ann. Nucl. Energy 16, 313 (1989)

    Article  Google Scholar 

  77. Z. Li, X. Wang, K. **g, A. Cui, D. Liu, S. Su, P. Tang, T. Chih, S. Zhang, J. Gao, Radiochim. Acta 64, 95 (1994)

    Google Scholar 

  78. G. Lhersonnau, P. Denloov, G. Canchel, J. Huikari, J. Jardin, A. Tokinen, V. KOlhinen, C. Lau, L. Lebroton, A.C. Mueller, A. Nieminen, S. Nummela, H. Penttila, K. Perajavi, Z. Radivojevic, V. Rubchenya, M.G. Saint-Laurent, W.H. Trzaska, D. Vakhtin, J. Vervier, A.C. Villari, J.C. Viang, J. Aystoe, Eur. Phys. J. A 9, 385 (2000)

    Article  ADS  Google Scholar 

  79. I. Clenk, Radiochim. Acta 85, 85 (1999)

    Google Scholar 

  80. I. Clenk, Radiochim. Acta 89, 481 (2001)

    Google Scholar 

  81. J. Laurec, A. Adam, T. DeBruyne, E. Brauge, T. Granier, J. Aupiais, O. Barsillon, G. Lepetit, N. Authier, P. Casoli, Nucl. Data Sheet 111, 2965 (2010)

    Article  ADS  Google Scholar 

  82. H. Naik, V.K. Mulik, P.M. Prajapati, B.S. Shivasankar, S.V. Suryanarayana, K.C. Jagadeesan, S.V. Thakare, S.C. Sharma, A. Goswami, Nucl. Phys. A 913, 185 (2013)

    Article  ADS  Google Scholar 

  83. H. Umezawa, S. Baba, H. Baba, Nucl. Phys. A 160, 65 (1971)

    Article  ADS  Google Scholar 

  84. P.M. Prajapati, H. Naik, S.V. Suryanarayana, S. Mukherjee, K.C. Jagadeesan, S.C. Sharma, S.V. Thakre, K.K. Rasheed, S. Ganesan, A. Goswami, Eur. Phys. J. A 48, 35 (2012)

    Article  ADS  Google Scholar 

  85. R. Crasta, H. Naik, S.V. Suryanarayana, B.S. Shivashankar, V.K. Mulik, P.M. Prajapati, Ganesh Sanjeev, S.C. Sharma, P.V. Bhagwat, A.K. Mohanty, S. Ganesan, A. Goswami, Ann. Nucl. Energy 47, 160 (2012)

    Article  Google Scholar 

  86. J.F. Ziegler, J.P. Biersack, U. Littmark, SRIM 2003 code. The stop** and Range of Ions in Solids (Pergamon, New York, 2003)

  87. H. Liskien, A. Paulsen, At. Data Nucl. Data Tables 15, 57 (1975)

    Article  ADS  Google Scholar 

  88. J.W. Meadows, D.L. Smith, Neutrons from proton bombardment of natural Lithium, Argonne National Laboratory Report ANL-7983 (1972)

  89. C.H. Poppe, J.D. Anderson, J.C. Davis, S.M. Grimes, C. Wong, Phys. Rev. C 14, 438 (1976)

    Article  ADS  Google Scholar 

  90. E. Browne, R.B. Firestone, in Table of Radioactive Isotopes, edited by V.S. Shirley (Wiley, New York, 1986) and R.B. Firestone, L.P. Ekstrom, in Table of Radioactive Isotopes, Version 2.1 (2004)http://ie.lbl.gov/toi/index.asp

  91. J. Blachot, C. Fiche, Ann. Phys. Suppl. 6, 3 (1981)

    Google Scholar 

  92. N. Sugarman, A. Turkevich, in Radiochemical Studies: The Fission Product, edited by C.D. Coryell, N. Sugarman, Vol. 3 (McGraw-Hill, New York, 1951) p. 1396

  93. P. Moller, Nucl. Phys. A 192, 529 (1972)

    Article  ADS  Google Scholar 

  94. H. Naik, R.J. Singh, R.H. Iyer, Eur. Phys. J. A 16, 495 (2003)

    Article  ADS  Google Scholar 

  95. U. Brossa, S. Grossmann, A. Muller, Phys. Rep. 197, 167 (1990)

    Article  ADS  Google Scholar 

  96. B.D. Wilkins, E.P. Steinberg, R.R. Chasman, Phys. Rev. C 14, 1832 (1976)

    Article  ADS  Google Scholar 

  97. H. Kudo, H. Muramatsu, H. Nakahara, K. Miyano, I. Kohno, Phys. Rev. C 25, 3011 (1982)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Naik.

Additional information

Communicated by H. Miyatake

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naik, H., Crasta, R., Suryanarayana, S.V. et al. Mass distribution in the quasi-mono-energetic neutron-induced fission of 232Th. Eur. Phys. J. A 50, 144 (2014). https://doi.org/10.1140/epja/i2014-14144-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2014-14144-4

Keywords

Navigation