Log in

Beta decay of 94Pd and of the 71 s isomer of 94Rh

  • Nuclear Structure and Reactions
  • Published:
The European Physical Journal A - Hadrons and Nuclei Aims and scope Submit manuscript

Abstract.

The β decay of 94Pd and of the 71s isomer of 94Rh was investigated by using total γ-ray absorption techniques. Several levels in 94Rh are established, including a new low-lying isomer characterized by a half-life of 0.48(3)μs and a de-exciting transition of 55keV. E2 multipolarity is determined for this transition by measuring the intensities of its γ-rays and the characteristic X-rays from its electron conversion. On the basis of the measured reduced β-decay transition rates to known 94Ru levels and shell model considerations, the spin-parity of the 71s and the 0.48μs isomers of 94Rh is assigned to be (4+) and (2+), respectively. The β-decay strength distributions measured for 94Pd and the 71s isomer of 94Rh yield Q EC values of 6700(320) and 9750(320)keV for these decays and give evidence for the population of those states below and above the magic N = 50 gap that belong to both components of the 0g spin-orbit doublet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Roeckl, Lect. Notes Phys. 651, 223 (2004).

    ADS  Google Scholar 

  2. I. Mukha, Phys. Rev. Lett. 95, 022501 (2005).

    Article  ADS  Google Scholar 

  3. I. Mukha, Nature 439, 298 (2006).

    Article  ADS  Google Scholar 

  4. H. Schatz, Phys. Rep. 294, 167 (1998).

    Article  ADS  Google Scholar 

  5. C. Fröhlich, Phys. Rev. Lett. 96, 142502 (2006).

    Article  ADS  Google Scholar 

  6. G. Audi, O. Bersillon, J. Blachot, A.H. Wapstra, Nucl. Phys. A 729, 3 (2003).

    Article  ADS  Google Scholar 

  7. W. Kurcewicz, Z. Phys. A 308, 21 (1982).

    Article  ADS  Google Scholar 

  8. K. Oxorn, B. Singh, S.K. Mark, Z. Phys. A 294, 389 (1980).

    Article  ADS  Google Scholar 

  9. I.P. Johnstone, L.D. Skouras, Phys. Rev. C 53, 3150 (1996)

    Article  ADS  Google Scholar 

  10. H. Herndl, B.A. Brown, Nucl. Phys. A 627, 35 (1997).

    Article  ADS  Google Scholar 

  11. J.C. Hardy, Phys. Lett. B 71, 307 (1977)

    Article  ADS  Google Scholar 

  12. M. Karny, Nucl. Instrum. Methods Phys. Res. B 126, 411 (1997).

    Article  Google Scholar 

  13. B.A. Brown, K. Rykaczewski, Phys. Rev. C 50, R2270 (1994).

  14. Z. Hu, Phys. Rev. C 60, 024315 (1999)

    Article  ADS  Google Scholar 

  15. M. Karny, Nucl. Phys. A 690, 367 (2001).

    Article  ADS  Google Scholar 

  16. C. Plettner, Phys. Rev. C 66, 044319 (2002).

    Article  ADS  Google Scholar 

  17. M. Karny, Eur. Phys. J. A 25, s01, 135 (2005).

  18. O. Kavatsyuk, Eur. Phys. J. A 25, 211 (2005).

    Article  ADS  Google Scholar 

  19. H.V. Klapdor, C.O. Wene, J. Phys. G 6, 1061 (1980).

    Article  ADS  Google Scholar 

  20. L. Batist, Nucl. Phys. A 720, 245 (2003).

    Article  ADS  Google Scholar 

  21. L. Batist, GSI Scientific Report 2003, p. 11, http:// wwwaix.gsi.de/annrep2003.

  22. B.A. Brown, MSU-NSCL Report 1289.

  23. R. Kirchner, Nucl. Instrum. Methods. Phys. Res. B 26, 204 (1987).

    Article  ADS  Google Scholar 

  24. E. Roeckl, Nucl. Instrum. Methods Phys. Res. B 204, 53 (2003).

    Article  ADS  Google Scholar 

  25. I. Mukha, Eur. Phys. J. A 25, s01, 131 (2005).

  26. R.S. Hager, E.C. Seltzer, Nucl. Data A 4, 1 (1968).

    Article  Google Scholar 

  27. I.P. Johnstone, L.D. Skouras, Eur. Phys. J. A 11, 125 (2001).

    Article  MathSciNet  ADS  Google Scholar 

  28. E. Nolte, G. Korschinek, U. Heim, Z. Phys. A 298, 191 (1980).

    Article  ADS  Google Scholar 

  29. G. Audi, A.H. Wapstra, C. Thibault, Nucl. Phys. A 729, 337 (2003).

    Article  ADS  Google Scholar 

  30. J.A. Clark, Eur. Phys. J. A 25, s01, 629 (2005).

  31. R. Gross, A. Frenkel, Nucl. Phys. A 267, 85 (1976).

    Article  ADS  Google Scholar 

  32. D. Rudolph, K.P. Lieb, H. Grawe, Nucl. Phys. A 597, 298 (1996).

    Article  ADS  Google Scholar 

  33. I.S. Towner, Nucl. Phys. A 444, 402 (1985).

    Article  ADS  Google Scholar 

  34. K. Rykaczewski, Z. Phys. A 322, 263 (1985).

    Article  ADS  Google Scholar 

  35. K. Rykaczewski, GSI-90-62 (1990).

  36. M.S. Antony, A. Pape, J. Britz, At. Data Nucl. Data Tables 66, 1 (1997).

    Article  ADS  Google Scholar 

  37. I.P. Johnstone, Phys. Rev. C 44, 1476 (1991).

    Article  ADS  Google Scholar 

  38. A. Juodagalvis, D.J. Dean, Phys. Rev. C 72, 024306 (2005).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Batist.

Additional information

J. Äystö

Rights and permissions

Reprints and permissions

About this article

Cite this article

Batist, L., Blazhev, A., Döring, J. et al. Beta decay of 94Pd and of the 71 s isomer of 94Rh. Eur. Phys. J. A 29, 175–182 (2006). https://doi.org/10.1140/epja/i2006-10074-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epja/i2006-10074-0

PACS.

Navigation