Log in

GFMC studies of low-density neutron matter

  • Original Paper
  • Published:
The European Physical Journal A - Hadrons and Nuclei Aims and scope Submit manuscript

Abstract.

Green's function Monte Carlo methods are used to provide benchmarks for studies of low-density neutron matter. The zero-temperature equation of state and pair correlation functions are studied for the AV8\(^\prime\) NN interaction model, and for an idealized model comprised of neutrons with a short-range interaction and an arbitrarily large (negative) scattering length. For this idealized problem the equation of state is a constant multiplied by the Fermi-gas energy, this constant is found to be nearly 1/2. Similar ratios are found for realistic NN interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.J. Pethic, D.G. Ravenhall, Annu. Rev. Nucl. Part. Sci. 45, 429 (1995).

    Article  Google Scholar 

  2. B.D. Day, R.B. Wiringa, Phys. Rev. C 32, 1057 (1985).

    Article  Google Scholar 

  3. H.Q. Song, M. Baldo, G. Giansiracusa, U. Lombardo, Phys. Rev. Lett. 81, 1584 (1998).

    Article  Google Scholar 

  4. A. Fabrocini, S. Fantoni, Phys. Lett. B 294, 263 (1993).

    Article  Google Scholar 

  5. A. Akmal, V.R. Pandharipande, Phys. Rev. C 56, 2261 (1997).

    Article  Google Scholar 

  6. K.E. Schmidt, D.M. Ceperley, in The Monte Carlo Method in Condensed Matter Physics, edited by K. Binder (Springer-Verlag, Heidelberg, 1992) p. 205.

  7. S.C. Pieper, V.R. Pandharipande, R.B. Wiringa, J. Carlson, Phys. Rev. C 64, 014001 (2001).

    Article  Google Scholar 

  8. K.E. Schmidt, S. Fantoni, Phys. Lett. B 446, 99 (1999).

    Article  Google Scholar 

  9. V.G.J. Stoks, R.A.M. Klomp, C.P.F. Terheggen, J.J. de Swart, Phys. Rev. C 49, 2950 (1994).

    Article  Google Scholar 

  10. R. Machleidt, R. Sammarruca, Y. Song, Phys. Rev. C 53, R1483 (1996).

  11. R.B. Wiringa, V.G.J. Stoks, R. Schiavilla, Phys. Rev. C 51, 38 (1995).

    Article  Google Scholar 

  12. Steven C. Pieper, K. Varga, R.B. Wiringa, Phys. Rev. C 66, 044310 (2002), preprint nucl-th/0206061.

    Article  Google Scholar 

  13. A. Akmal, V.R. Pandharipande, D.G. Ravenhall, Phys. Rev. C 58, 1804 (1998).

    Article  Google Scholar 

  14. S.A. Coon, J.L. Friar, Phys. Rev. C 34, 1060 (1986).

    Article  Google Scholar 

  15. Shiwei Zhang, J. Carlson, J.E. Gubernatis, Phys. Rev. Lett. 74, 3652 (1995).

    Article  Google Scholar 

  16. R.B. Wiringa, Steven C. Pieper, J. Carlson, V.R. Pandharipande, Phys. Rev. C 62, 014001 (2000).

    Article  Google Scholar 

  17. G. Bertsch, private communication.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Carlson.

Additional information

Received: 1 November 2002, Published online: 15 July 2003

PACS:

26.60.+c Nuclear matter aspects of neutron stars - 21.65.+f Nuclear matter - 21.30.-x Nuclear forces

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carlson, J. GFMC studies of low-density neutron matter. Eur. Phys. J. A 17, 463–467 (2003). https://doi.org/10.1140/epja/i2002-10193-6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epja/i2002-10193-6

Keywords

Navigation