Log in

Investigation of the Degradation of the Membrane Electrode Assembly for a Proton Exchange Membrane Water Electrolyzer by Accelerated Stress Tests

  • DEVICES AND PRODUCTS BASED ON NANOMATERIALS AND NANOTECHNOLOGIES
  • Published:
Nanobiotechnology Reports Aims and scope Submit manuscript

Abstract—

Proton exchange membrane (PEM) water electrolysis allows the production of green hydrogen using renewable but unstable energy sources such as wind or solar power. The lifetime assessment of a PEM water electrolyzer and its components require lengthy and costly testing, so there is a need for the development and application of accelerated stress-testing methods, which allow the accelerated investigation of degradation processes occurring under realistic operating conditions. In this study, the dynamic cycling and constant operation of the membrane electrode assembly of a PEM water electrolyzer at elevated voltages are considered as two methods of accelerated stress testing. The degradation depth, its distribution, and mechanisms are studied using electrochemical impedance spectroscopy, polarization curve breakdown into voltage losses components, and scanning electron microscopy. The greatest depth of degradation (up to 133 mV) is achieved during continuous operation of the membrane electrode assembly at elevated voltage, due to the anode porous transport layer (PTL) surface passivation and slow oxygen transport in its porous structure. The degradation depth of the membrane electrode assembly after dynamic cycling is found to be significantly lower (7–20 mV), and is related to degradation of the catalyst layer, with the decrease of mass transport losses being significantly responsible for the decrease in the overall degradation rate observed at high current densities. The influence of the anode catalyst loading reducing and the Ti-hydride protective coating on the surface of the anode PTL on the degradation of the PEM water electrolyzer is also considered. The use of a protective coating on the surface of the PTL provides the formation of a compact anode catalyst layer with a developed interface between the catalyst layer and PTL even at the reduced anode catalyst loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

REFERENCES

  1. P. Saha, F. A. Akash, S. M. Shovon, et al., Int. J. Green Energy, 1 (2023).

  2. Z. Abdin, A. Zafaranloo, A. Rafiee, et al., Renewable Sustainable Energy Rev. 120, 109620 (2020).

    Article  CAS  Google Scholar 

  3. S. P. Filippov and A. B. Yaroslavtsev, Russ. Chem. Rev. 90, 627 (2021).

    Article  Google Scholar 

  4. J. P. Hughes, J. Clipsham, H. Chavushoglu, et al., Renewable Sustainable Energy Rev. 139, 110709 (2021).

    Article  CAS  Google Scholar 

  5. F. Hegge, F. Lombeck, E. Cruz Ortiz, et al., ACS Appl. Energy Mater. 3, 8276 (2020).

    CAS  Google Scholar 

  6. M. N. I. Salehmin, T. Husaini, J. Goh, and A. B. Sulong, Energy Convers. Manage. 268, 115985 (2022).

    Article  CAS  Google Scholar 

  7. E. Kuhnert, V. Hacker, and M. Bodner, Int. J. Energy Res. 2023, 1 (2023).

    Article  Google Scholar 

  8. S. A. Grigoriev, V. N. Fateev, D. G. Bessarabov, and P. Millet, Int. J. Hydrogen Energy 45, 26036 (2020).

    Article  CAS  Google Scholar 

  9. F. Fouda-Onana, M. Chandesris, V. Medeau, et al., Int. J. Hydrogen Energy 41, 16627 (2016).

    Article  CAS  Google Scholar 

  10. A. Z. Tomić, I. Pivac, and F. Barbir, J. Power Sources 557, 232569 (2023).

    Article  Google Scholar 

  11. A. S. Pushkarev, I. V. Pushkareva, and D. G. Bessarabov, Energy Fuels 36, 6613 (2022).

    Article  CAS  Google Scholar 

  12. T. Wang, X. Cao, and L. Jiao, Carbon Neutrality 1, 21 (2022).

    Article  Google Scholar 

  13. P. Ren, P. Pei, Y. Li, et al., Prog. Energy Combust. Sci. 80, 100859 (2020).

    Article  Google Scholar 

  14. N. Li, S. S. Araya, and S.K. Kær, Electrochim. Acta 370, 137748 (2021).

    Article  CAS  Google Scholar 

  15. H. Yu, L. Bonville, J. Jankovic, and R. Maric, Appl. Catal., B 260, 118194 (2020).

    Article  CAS  Google Scholar 

  16. A. Voronova, S. Kim, D. Kim, et al., Energy Environ. Sci. 16, 5170 (2023).

    Article  CAS  Google Scholar 

  17. S. A. Grigoriev, D. G. Bessarabov, and V. N. Fateev, Russ. J. Electrochem. 53, 318 (2017).

    Article  CAS  Google Scholar 

  18. S. A. Grigoriev, D. G. Bessarabov, and A. S. Glukhov, Russ. J. Electrochem. 53, 808 (2017).

    Article  CAS  Google Scholar 

  19. M. Chandesris, V. Médeau, N. Guillet, et al., Int. J. Hydrogen Energy 40, 1353 (2015).

    Article  CAS  Google Scholar 

  20. M. Prestat, J. Power Sources 556, 232469 (2023).

    Article  CAS  Google Scholar 

  21. A. Voronova, H. Kim, J. H. Jang, et al., Int. J. Energy Res. 46, 11867 (2022).

    Article  CAS  Google Scholar 

  22. S. Chatterjee, X. Peng, S. Intikhab, et al., Adv. Energy Mater. 11, 2101438 (2021).

    Article  CAS  Google Scholar 

  23. P. Aßmann, A. S. Gago, P. Gazdzicki, et al., Curr. Opin. Electrochem. 21, 225 (2020).

    Article  Google Scholar 

  24. E. Pahon, D. Hissel, and N. Yousfi-Steiner, J. Power Sources 546, 231895 (2022).

    Article  CAS  Google Scholar 

  25. A. S. Pushkarev, I. V. Pushkareva, M. V. Kozlova, et al., Russ. J. Electrochem. 58, 325 (2022).

    Article  Google Scholar 

  26. C. A. Reiser, L. Bregoli, T. W. Patterson, et al., Electrochem. Solid-State Lett. 8, A273 (2005).

    Article  CAS  Google Scholar 

  27. G. Papakonstantinou, G. Algara-Siller, D. Teschner, et al., Appl. Energy 280, 115911 (2020).

    Article  CAS  Google Scholar 

  28. S. M. Alia, K. S. Reeves, H. Yu, et al., J. Electrochem. Soc. 169, 054517 (2022).

    Article  CAS  Google Scholar 

  29. C. Rakousky, G. P. Keeley, K. Wippermann, et al., Electrochim. Acta 278, 324 (2018).

    Article  CAS  Google Scholar 

  30. C. Liu, M. Carmo, G. Bender, et al., Electrochem. Commun. 97, 96 (2018).

    Article  CAS  Google Scholar 

  31. C. Rakousky, U. Reimer, K. Wippermann, et al., J. Power Sources 326, 120 (2016).

    Article  CAS  Google Scholar 

  32. T. Bautkinova, N. Utsch, T. Bystron, et al., J. Power Sources 565, 232913 (2023).

    Article  CAS  Google Scholar 

  33. T. Bystron, M. Vesely, M. Paidar, et al., J. Appl. Electrochem. 48, 713 (2018).

    Article  CAS  Google Scholar 

  34. V. Menshchikov, A. Alekseenko, V. Guterman, et al., Nanomaterials 10, 742 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. I. V. Pushkareva, A. S. Pushkarev, S. A. Grigor’ev, et al., Russ. J. Appl. Chem. 89, 2109 (2016).

    Article  CAS  Google Scholar 

  36. A. S. Pushkarev, I. V. Pushkareva, S. P. Du Preez, et al., Chem. Probl. 17, 9 (2019).

    Article  Google Scholar 

  37. A. S. Pushkarev, I. V. Pushkareva, M. A. Solovyev, et al., Electrochim. Acta 399, 139436 (2021).

    Article  CAS  Google Scholar 

  38. S. A. Grigoriev, A. S. Pushkarev, I. V. Pushkareva, et al., Int. J. Hydrogen Energy 42, 27845 (2017).

    Article  CAS  Google Scholar 

  39. A. S. Pushkarev, M. A. Solovyev, S. A. Grigoriev, et al., Int. J. Hydrogen Energy 45, 26206 (2020).

    Article  CAS  Google Scholar 

  40. Yu. V. Zubavichus, S. A. Grigor’ev, A. S. Pushkarev, et al., Nanotechnolog. Russ. 15. 341 (2020).

    Article  CAS  Google Scholar 

  41. I. V. Pushkareva, A. S. Pushkarev, V. N. Kalinichenko, et al., Catalysts 11, 256 (2021).

    Article  CAS  Google Scholar 

  42. A. S. Pushkarev, I. V. Pushkareva, M. A. Solovyev, et al., Mendeleev Commun. 31, 20 (2021).

    Article  CAS  Google Scholar 

  43. S. A. Grigor’ev, A. S. Pushkarev, V. N. Kalinichenko, et al., Kinet. Catal. 56, 689–693 (2015).

    Article  Google Scholar 

  44. S. I. Butrim, M. A. Solov’ev, I. V. Pushkareva, et al., Nanobiotechnol. Rep. (2024) (in press).

  45. I. V. Pushkareva, A. S. Pushkarev, M. A. Solov’ev, et al., Nanobiotechnol. Rep. (2024) (in press).

  46. A. S. Pushkarev, I. V. Pushkareva, M. A. Solovyev, et al., Nanotechnol. Russ. 15, 785–792 (2020).

    Article  CAS  PubMed  Google Scholar 

  47. I. V. Pushkareva, M. A. Solovyev, S. I. Butrim, et al., Membranes (Basel) 13, 192 (2023).

    Article  CAS  PubMed  Google Scholar 

  48. S. H. Frensch, A. C. Olesen, S. S. Araya, and S. K. Kær, Electrochim. Acta 263, 228 (2018).

    Article  CAS  Google Scholar 

  49. P. Córdoba-Torres, T. J. Mesquita, O. Devos, et al., Electrochim. Acta 72, 172 (2012).

    Article  Google Scholar 

  50. I. Dedigama, P. Angeli, K. Ayers, et al., Int. J. Hydrogen Energy 39, 4468 (2014).

    Article  CAS  Google Scholar 

  51. P. Lettenmeier, S. Kolb, F. Burggraf, et al., J. Power Sources 311, 153 (2016).

    Article  CAS  Google Scholar 

  52. C. Erinmwingbovo and F. La Mantia, Sci. Rep. 11, 1362 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. D. Klotz, A. Weber, and E. Ivers-Tiffée, Electrochim. Acta 227, 110 (2017).

    Article  CAS  Google Scholar 

  54. I. Franzetti, A. Pushkarev, A.-L. Chan, and T. Smolinka, Energy Technol. 11, 2300375 (2023).

    Article  CAS  Google Scholar 

  55. M. Schönleber, D. Klotz, and E. Ivers- Tiffée, Electrochim. Acta 131, 20 (2014).

    Article  Google Scholar 

  56. A. S. Pushkarev, I. V. Pushkareva, S. P. du Preez, and D. G. Bessarabov, Catalysts 13, 554 (2023).

    Article  CAS  Google Scholar 

  57. P. Lettenmeier, R. Wang, R. Abouatallah, et al., Electrochim. Acta 210, 502 (2016).

    Article  CAS  Google Scholar 

  58. C. Rozain, E. Mayousse, N. Guillet, and P. Millet, Appl. Catal., B 182, 123 (2016).

    Article  CAS  Google Scholar 

  59. J. O. Majasan, F. Iacoviello, J. I. S. Cho, et al., Int. J. Hydrogen Energy 44 (36), 19519 (2019).

    Article  CAS  Google Scholar 

  60. Z. Kang, T. Schuler, Y. Chen, et al., Electrochim. Acta 429, 140942 (2022).

    Article  CAS  Google Scholar 

  61. I. Dedigama, P. Angeli, N. van Dijk, et al., J. Power Sources 265, 97 (2014).

    Article  CAS  Google Scholar 

  62. Z. Kang, S. M. Alia, J. L. Young, and G. Bender, Electrochim. Acta 354, 136641 (2020).

    Article  CAS  Google Scholar 

  63. C. Rakousky, U. Reimer, K. Wippermann, et al., J. Power Sources 342, 38 (2017).

    Article  CAS  Google Scholar 

  64. P. J. Rheinlander and J. Durst, J. Electrochem. Soc. 168, 024511 (2021).

    Article  Google Scholar 

  65. C. Spori, J. T. H. Kwan, A. Bonakdarpour, et al., Angew. Chem. Int. Ed. 56, 5994 (2017).

    Article  Google Scholar 

  66. F. Claudel, L. Dubau, G. Berthomé, et al., ACS Catal. 9, 4688 (2019).

    Article  CAS  Google Scholar 

  67. P. Lettenmeier, S. Kolb, N. Sata, et al., Energy Environ. Sci. 10, 2521 (2017).

    Article  CAS  Google Scholar 

  68. T. Schuler, R. De Bruycker, T. J. Schmidt, and F. N. Buchi, J. Electrochem. Soc. 166, F270 (2019).

    Article  CAS  Google Scholar 

  69. T. Schuler, T. J. Schmidt, and F. N. Büchi, J. Electrochem. Soc. 166, F555 (2019).

    Article  CAS  Google Scholar 

  70. E. Kuhnert, M. Heidinger, D. Sandu, et al., Membranes (Basel) 13, 348 (2023).

    Article  CAS  PubMed  Google Scholar 

  71. A. Weiß, A. Siebel, M. Bernt, et al., J. Electrochem. Soc. 166, F487 (2019).

    Article  Google Scholar 

  72. S. H. Frensch, F. Fouda-Onana, G. Serre, et al., Int. J. Hydrogen Energy 44, 29889 (2019).

    Article  CAS  Google Scholar 

  73. A. Hartig-Weiß, M. Bernt, A. Siebel, and H. A. Gasteiger, J. Electrochem. Soc. 168, 114511 (2021).

    Article  Google Scholar 

  74. J. Dodwell, M. Maier, J. Majasan, et al., J. Power Sources 498, 229937 (2021).

    Article  CAS  Google Scholar 

  75. M. Zlobinski, T. Schuler, F. N. Buchi, et al., J. Electrochem. Soc. 167, 084509 (2020).

    Article  CAS  Google Scholar 

  76. C. Liu, M. Shviro, A. S. Gago, et al., Adv. Energy Mater. 11, 2002926 (2021).

    Article  CAS  Google Scholar 

  77. C. Liu, M. Shviro, G. Bender, et al., J. Electrochem. Soc. 170, 034508 (2023).

    Article  CAS  Google Scholar 

  78. M. Bernt, A. Siebel, and H. A. Gasteiger, J. Electrochem. Soc. 165, F305 (2018).

    Article  CAS  Google Scholar 

  79. S. Siracusano, N. Hodnik, P. Jovanovic, et al., Nano Energy 40, 618–632 (2017).

    Article  CAS  Google Scholar 

  80. M. Rogler, M. Suermann, R. Wagner, et al., J. Electrochem. Soc. 170, 114521 (2023).

    Article  Google Scholar 

  81. U. Babic, E. Nilsson, A. Pătru, et al., J. Electrochem. Soc. 166, F214 (2019).

    Article  CAS  Google Scholar 

  82. K. Park, B.-Y. Chang, and S. Hwang, ACS Omega 4, 19307 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. G. Schmidt, M. Suermann, B. Bensmann, et al., J. Electrochem. Soc. 167, 114511 (2020).

    Article  CAS  Google Scholar 

  84. Z. Zeng, R. Ouimet, L. Bonville, et al., J. Electrochem. Soc. 169, 054536 (2022).

    Article  CAS  Google Scholar 

  85. S. W. Lee, C. Baik, D.-H. Kim, and C. Pak, J. Power Sources 493, 229689 (2021).

    Article  CAS  Google Scholar 

  86. J. Lopata, Z. Kang, J. Young, et al., J. Electrochem. Soc. 167, 064507 (2020).

    Article  CAS  Google Scholar 

Download references

Funding

Electrochemical studies were carried out at the National Research Centre “Kurchatov Institute” as part of the implementation of order no. 89 dated January 20, 2023, under clause 3p.2.5. “Development of new electrocatalytic materials with improved properties for PEM electrochemical devices.” The formation of protective electrode coatings was carried out with financial support of the Ministry of Science and Higher Education of the Russian Federation within the framework of state task no. FSWF-2023-0014 in the field of scientific activity for 2023–2025. The work of A.S. Pushkarev and I.V. Pushkareva were supported by the KP5 program (DSI HySA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Kozlova.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by A. Bulaev

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozlova, M.V., Pushkareva, I.V., Butrim, S.I. et al. Investigation of the Degradation of the Membrane Electrode Assembly for a Proton Exchange Membrane Water Electrolyzer by Accelerated Stress Tests. Nanotechnol Russia 18 (Suppl 2), S375–S388 (2023). https://doi.org/10.1134/S2635167624600135

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2635167624600135

Navigation