Log in

Improvement of the Bioavailability of Low-Solubility Drugs by Reprecipitation on Nanostructured Surfaces

  • NANOBIOMEDICINE AND NANOPHARMACEUTICALS
  • Published:
Nanobiotechnology Reports Aims and scope Submit manuscript

Abstract

Тhis work suggests ways to improve the bioavailability of low-solubility drugs by precipitation from solutions in universal solvents on nanostructured surfaces including nanoparticles (NPs) such as SiO2 and Fe3O4. The same effect is found on metal-polymer composites containing Co, Ni, and Fe obtained from unsaturated dicarboxylates. In both cases, this is achieved by increasing the total desorption surface. The examples of resveratrol and of the preparation of the sum of furocoumarins Ammifurin show an increase of the relative desorption ratio of drugs by two orders of magnitude from the surface of nanostructured CaCO3 particles into aqueous solutions. The results of MTT tests show the comparable effects of Ammifurin and of the used metal-polymer nanocomposites on HeLa cervical cancer cells and human HepG2 liver carcinoma, thereby making their combined use potentially possible. Thus, we propose a way to improve the bioavailability of a wide class of drugs, potentially applicable for all cases when the toxicity of the carrier NPs does not exceed the independent toxicity of the target substance. The possibility of the mutual enhancement of toxicity requires a separate study and is not considered here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. A. K. Sariev, D. A. Abaimov, and R. D. Sejfulla, Eksp. Klin. Farmakol., No. 11, 34 (2010). https://doi.org/10.30906/0869-2092-2010-73-11-34-38

  2. K. V. Alekseev, N. V. Tikhonova, Ye. V. Blinskaya, et al., J. New Med. Technol. 19, 43 (2010).

    Google Scholar 

  3. P. V. Krutov, Scientific Substantiation of the Technology for the Joint Production of Ammifurin and Anmarin from the Fruits of Ammi Large (Ammi majus L) (Moscow, 2015) [in Russain].

  4. State Register of Medicines. https://grls.minzdrav.gov.ru/ grls.aspx?s=Ammifurin&m=TradeName. Accessed December 6, 2023.

  5. P. V. Krutov and A. I. Gromakova, Vopr. Biol. Med. Farmats. Khim., No. 12, 21 (2014).

  6. G. A. Kuznetsova, Natural Coumarins and Furocoumarins, (Nauka, Leningrad, 1967) [in Russian].

    Google Scholar 

  7. A. Z. Abyshev, E. M. Agaev, and Yu. B. Kerimov, Chemistry and Pharmacology of Natural Coumarins (Caspian Supplies, Baku, 2003) [in Russian].

  8. V. P. Georgievskij, I. F. Komisarenko, and S. D. Dmitruk, Biologically Active Substances of Medicinal Plants (Nauka, Novosibirsk, 1990) [in Russian].

    Google Scholar 

  9. Ya. I. Hadzhaj, Doctoral Dissertation in Medicine (Kharkov, 1969).

  10. I. Yeruham, D. Bar, A. Nafan, et al., Israel J. Vet. Med. 45, 260 (1989).

    Google Scholar 

  11. B. K. Kotovskii, E. I. Sakanyan, E. E. Lesnovskaya, et al., Ru Patent No. 2223110 (2002).

  12. A. Z. Abyshev, K. B. Nguen, A. A. Shtro, et al., RU Patent No. 2686743 (2018).

  13. Y. A. Selim and N. H. Ouf, Med. Chem. Lett., No. 2, 1 (2012). https://doi.org/10.1186/2191-2858-2-1

  14. A. V. Lozhkin and E. I. Sakanyan, Khim.-Farm. Zh. 40, 47 (2006). https://doi.org/10.30906/0023-1134-2006-40-6-47-56

    Article  Google Scholar 

  15. K. M. Lakin, T. V. Smirnova, G. M. Vishnyakova, et al., Khim.-Farm. Zh. 23, 824 (1989).

    Google Scholar 

  16. Ya. I. Hadzhai, G. V. Obolentseva, and A. P. Prokopenko, Farmakol. Toksikol 29, 160 (1996).

    Google Scholar 

  17. A. Kleemann and J. Engel, Pharmaceutical Substances: Syntheses, Patents, Applications (Thieme, Stuttgart, 2001).

    Google Scholar 

  18. A. Z. Abyshev, E. M. Agaev, and E. V. Semenov, Calcium Ion Antagonists of a New Generation (Azer. Med. Univ., Baku, 2003) [in Russian].

    Google Scholar 

  19. K. Luo, J. Sun, J. Y. Chan, et al., Chemotherapy 57, 449 (2011). https://doi.org/10.1159/000221641

    Article  CAS  PubMed  Google Scholar 

  20. M. E. Marshall, J. L. Mohler, K. Edmonds, et al., Cancer Res. Clin. Oncol., No. 120, 39 (1994). https://doi.org/10.1007/BF01377124

  21. N. Babudri, B. Pani, S. Venturini, et al., Environ. Pathol. Toxicol. Oncol., No. 7, 123 (1986).

  22. C. Kofmas, I. Chinou, A. Loukis, et al., Planta Med., No. 64, 174 (1998).

  23. K. Myung, J. A. Manthey, and J. A. Narciso, Appl. Microbiol. Biotechnol. 78, 401 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. S. P. Krechetov, M. S. Maslennikova, A. Yu. Kuksin, et al., Ross. Bioterap. Zh., No. 22 (2), 65 (2023). https://doi.org/10.17650/1726-9784-2023-22-2-65-73

  25. I. V. Marchenko, O. D. Smirnova, I. V. Kalashnikova, et al., Acta Nat. 9, S173 (2017).

    Google Scholar 

  26. V. Yu. Musatova, S. A. Semenov, D. V. Drobot, et al., Russ. J. Inorg. Chem. 61, 979 (2016). https://doi.org/10.7868/S0044457X16090166

    Article  Google Scholar 

  27. S. A. Semenov, D. V. Drobot, V. Yu. Musatova, et al., Russ. J. Inorg. Chem. 60, 897 (2015). https://doi.org/10.7868/S0044457X15080176

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We express our gratitude to K.V. Palamarchuk for the synthesis of Fe3O4 NPs and the provision of SiO2 NPs for experiments, R.A. Kamyshinsky (Resource Center “Nanoprobe,” National Research Center “Kurchatov Institute”) for obtaining SEM images, S.N. Malakhov (Resource Center “Optics,” National Research Center “Kurchatov Institute”) for assistance in spectrophotometry. The results were obtained using the “Optics,” “Polymer,” and “Nanoprobe” Resource Centers of the National Research Center “Kurchatov Institute.”

Funding

This work was funded in part by the National Research Center “Kurchatov Institute,” Order 116 of January 30, 2018. No additional grants were received to conduct or direct this specific study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. D. Smirnova.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smirnova, O.D., Musatova, V.Y., Kalashnikova, I.V. et al. Improvement of the Bioavailability of Low-Solubility Drugs by Reprecipitation on Nanostructured Surfaces. Nanotechnol Russia 18 (Suppl 2), S398–S406 (2023). https://doi.org/10.1134/S2635167623601262

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2635167623601262

Navigation