Log in

Ultrashort Optical Pulses in an Anisotropic Optical Medium with Carbon Nanotubes in the Presence of a Mechanical Load

  • NANOPHOTONICS
  • Published:
Nanobiotechnology Reports Aims and scope Submit manuscript

Abstract

In this work we study the effect of an acoustic field on the dynamics of a three-dimensional ultrashort pulse in an array of carbon nanotubes placed in an anisotropic optical medium. The acoustic field is introduced within gauge theory. The dependences of both field components (x and y) on the parameters of the problem are analyzed. The influence of the magnitude of this field on the character of pulse propagation in a nonlinear medium is detected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. A. V. Andrianov, N. A. Kalinin, M. Yu. Koptev, et al., Opt. Lett. 44, 303 (2019). https://doi.org/10.1364/OL.44.000303

    Article  CAS  Google Scholar 

  2. S. A. Kozlov and V. V. Samartsev, Fundamentals of Femtosecond Optics (Fizmatlit, Moscow, 2009; Woodhead Publishing, Cambridge, 2013).

  3. A. S. Shirokanev, A. S. Kibitkina, N. Yu. Ilyasova, and A. A. Degtyareva, Computer Optics 44, 809 (2020). https://doi.org/10.18287/2412-6179-CO-760

    Article  Google Scholar 

  4. N. Accanto, J. B. Nieder, L. Piatkowski, et al., Light: Sci. Appl. 3, e143 (2014). https://doi.org/10.1038/lsa.2014.24

  5. K. Sugioka, IEEJ Trans. Electronics Inform. Systems. 135, 1037 (2015). https://doi.org/10.1541/ieejeiss.135.1037

    Article  Google Scholar 

  6. Y. Han, Y. Guo, B. Gao, et al., Prog. Quantum Electron. 71, 100264 (2020). https://doi.org/10.1016/j.pquantelec.2020.100264

  7. L. Jiang, A. D. Wang, B. Li, et al., Light: Sci. Appl. 7, 17134 (2018). https://doi.org/10.1038/lsa.2017.134

    Article  CAS  Google Scholar 

  8. S. V. Alferov, S. V. Karpeev, S. N. Khonina, and O. Yu. Moiseev, Computer Optics 38, 57 (2014). https://doi.org/10.18287/0134-2452-2014-38-1-57-64

    Article  Google Scholar 

  9. A. V. Eletskii, Phys. Usp. 40, 899 (1997). https://doi.org/10.1070/PU1997v040n09ABEH000282

    Article  Google Scholar 

  10. M. S. Dresselhaus, G. Dresselhaus, and P. C. Eklund, Science of Fullerenes and Carbon Nanotubes (Academic Press, New York, 1996).

    Google Scholar 

  11. R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1998).

    Book  Google Scholar 

  12. A. Eatemadi, H. Daraee, H. Karimkhanloo, et al., Nanoscale Res. Lett. 9, 393 (2014). https://doi.org/10.1186/1556-276X-9-393

    Article  CAS  Google Scholar 

  13. N. T. Hung, A. R. T. Nugraha, and R. Saito, Energies 12, 4561 (2019). https://doi.org/10.3390/en12234561

    Article  CAS  Google Scholar 

  14. C. Soncini, F. Bondino, E. Magnano, et al., Nanotechnology 32, 105703 (2020). https://doi.org/10.1088/1361-6528/abce30

  15. R. Saito, A. R. T. Nugraha, E. H. Hasdeo, et al., Top. Curr. Chem. 375, 7 (2016). https://doi.org/10.1007/s41061-016-0095-2

    Article  CAS  Google Scholar 

  16. S. Yamashita, APL Photonics 4, 034301 (2018). https://doi.org/10.1063/1.5051796

  17. G.-L. Zhao, D. Bagayoko, and L. Yang, J. Appl. Phys. 99, 114311 (2006). https://doi.org/10.1063/1.2201738

  18. D. Li, H. Jussila, Y. Wang, et al., Sci. Rep. 8, 2738 (2018). https://doi.org/10.1038/s41598-018-21108-3

    Article  CAS  Google Scholar 

  19. A. N. Matveev, Optics (Mir, Moscow, 1988).

  20. N. N. Yanushkina, M. B. Belonenko, and N. G. Lebedev, Opt. Spectrosc. 108, 618 (2010). https://doi.org/10.1134/S0030400X1004017X

    Article  CAS  Google Scholar 

  21. E. N. Galkina, M. B. Belonenko, and R. A. Evdokimov, Bull. Russ. Acad. Sci.: Phys. 82, 17 (2018). https://doi.org/10.3103/S1062873818010070

    Article  CAS  Google Scholar 

  22. O. S. Lyapkosova, N. G. Lebedev, and M. B. Belonenko, Phys. Solid State 55, 2602 (2013). https://doi.org/10.1134/S1063783413120226

    Article  CAS  Google Scholar 

  23. N. N. Konobeeva and D. S. Skvortsov, Math. Phys. Comp. Simulation 23, 36 (2020). https://doi.org/10.15688/mpcm.jvolsu.2020.3.4

    Article  Google Scholar 

  24. A. V. Zhukov, R. Bouffanais, E. G. Fedorov, and M. B. Belonenko, J. Appl. Phys. 114, 143106 (2013). https://doi.org/10.1063/1.4824370

  25. M. A. H. Vozmediano, M. I. Katsnelson, and F. Guinea, Phys. Rep. 496, 109 (2010). https://doi.org/10.1016/j.physrep.2010.07.003

    Article  CAS  Google Scholar 

  26. D. S. Sanditov, V. V. Mantatov, M. V. Darmaev, and B. D. Sanditov, Tech. Phys. 54, 385 (2009). https://doi.org/10.1134/S1063784209030098

    Article  CAS  Google Scholar 

  27. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite Difference Time-Domain Method (Arthech House Publishers, Boston, 2000).

    Google Scholar 

  28. D. L. Golovashkin, N. D. Morunov, and L. V. Yablokova, Computer Optics 45, 461 (2021). https://doi.org/10.18287/2412-6179-CO-837

    Article  Google Scholar 

  29. E. S. Kozlova and V. V. Kotlyar, Computer Optics 37, 146 (2013). https://doi.org/10.18287/0134-2452-2013-37-2-146-154

    Article  Google Scholar 

  30. R. J. LeVeque, Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State and Time-Dependent Problems (Society for Industrial and Applied Mathematics, Philadelphia, 2007).

    Book  Google Scholar 

  31. A. V. Zhukov, R. Bouffanais, B. A. Malomed, et al., Phys. Rev. A 94, 053823 (2016). https://doi.org/10.1103/PhysRevA.94.053823

  32. N. N. Konobeeva and M. B. Belonenko, Int. J. Mod. Phys. B 35, 2150197 (2021). https://doi.org/10.1142/S0217979221501976

  33. M. B. Belonenko, N. G. Lebedev, and A. S. Popov, JETP Lett. 91, 461 (2010). https://doi.org/10.1134/S0021364010090067

    Article  CAS  Google Scholar 

Download references

Funding

The work of N.N. Konobeeva and A.S. Kulbina was supported by the Ministry of Science and Higher Education of the Russian Federation, the Council for Grants of the President of the Russian Federation (grant no. MD-3173.2021.1.2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Kulbina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Konobeeva, N.N., Kulbina, A.S. & Belonenko, M.B. Ultrashort Optical Pulses in an Anisotropic Optical Medium with Carbon Nanotubes in the Presence of a Mechanical Load. Nanotechnol Russia 17, 890–894 (2022). https://doi.org/10.1134/S2635167622060052

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2635167622060052

Navigation