Log in

Effect of the Nature of Counterion on Properties of Perfluorosulfonic Acid Membranes with Long and Short Side Chains

  • Published:
Membranes and Membrane Technologies Aims and scope Submit manuscript

Abstract

The paper presents the results of a study of water uptake, ionic conductivity, and Donnan potential in systems with perfluorosulfonic acid membranes in the H+, Li+, Na+, and K+ ionic forms and solutions of inorganic electrolytes. The properties of commercial membranes Aquivion E87-05S and Nafion 212, as well as membranes obtained from dispersions of Nafion 212 in solvents of various nature (N,N-dimethylformamide, 1-methyl-2-pyrrolidone, mixtures of isopropyl alcohol with water in a volume ratio of 80–20) have been studied. The effect of the number of functional groups, the length of the side chain of polymer macromolecules, and the morphology of the polymer in membranes on their equilibrium and transport properties depending on the nature of the counterion has been determined. The effect of relaxation and electrophoretic factors on the transfer of alkali metal ions through the system of pores and channels of perfluorosulfonic acid membranes is discussed. The slope of the concentration dependences of the Donnan potential for all highly hydrated membranes in the H+ form has been found to be close to the Nernstian one, while the selectivity to alkali metal ions increases for membranes with the highest ion exchange capacity or the lowest amount of sorbed water and diffusion permeability due to the exclusion of co-ions from the membrane phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. A. Yu. Alent’ev, A. V. Volkov, I. V. Vorotyntsev, A. L. Maksimov, and A. B. Yaroslavtsev, Membr. Membr. Technol. 5, 255 (2021). https://doi.org/10.1134/S2517751621050024

    Article  Google Scholar 

  2. A. Kusoglu and A. Z. Weber, Chem. Rev. 117, 987 (2017). https://doi.org/10.1021/acs.chemrev.6b00159

    Article  CAS  PubMed  Google Scholar 

  3. M. A. Yandrasits, M. J. Lindell, and S. J. Hamrock, Curr. Opin. Electrochem. 18, 90 (2019). https://doi.org/10.1016/j.coelec.2019.10.012

    Article  CAS  Google Scholar 

  4. A. Makhsoos, M. Kandidayeni, B. G. Pollet, and L. Boulon, Int. J. Hydrogen Energy 48, 15341 (2023). https://doi.org/10.1016/j.ijhydene.2023.01.048

    Article  CAS  Google Scholar 

  5. T. K. Maiti, J. Singh, P. Dixit, J. Majhi, S. Bhushan, A. Bandyopadhyay, and S. Chattopadhyay, Chem. Eng. J. Adv. 12, 100372 (2022). https://doi.org/10.1016/j.ceja.2022.100372

    Article  CAS  Google Scholar 

  6. I. Falina, N. Loza, S. Loza, E. Titskaya, and N. Romanyuk, Membranes 11, 227 (2021). https://doi.org/10.3390/membranes11030227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. D. Yu. Voropaeva, E. Yu. Safronova, S. A. Novikova, and A. B. Yaroslavtsev, Mendeleev Commun. 32, 287 (2022). https://doi.org/10.1016/J.MENCOM.2022.05.001

    Article  CAS  Google Scholar 

  8. D. Yu. Voropaeva and A. B. Yaroslavtsev, Membr. Membr. Technol. 4, 276 (2022). https://doi.org/10.1134/S2517751622040102

    Article  CAS  Google Scholar 

  9. A. Parasuraman, T. M. Lim, C. Menictas, and M. Skyllas-Kazacos, Electrochim. Acta 101, 27 (2013). https://doi.org/10.1016/J.ELECTACTA.2012.09.067

    Article  CAS  Google Scholar 

  10. H. B. Noh, M. S. Won, and Y. B. Shim, Biosensors Bioelectron. 61, 554 (2014). https://doi.org/10.1016/J.BIOS.2014.06.002

    Article  CAS  Google Scholar 

  11. L. Yu, Q. Zhang, B. Yang, Q. Xu, Q. Xu, and X. Hu, Sens. Actuators 259, 540 (2018). https://doi.org/10.1016/J.SNB.2017.12.103

    Article  CAS  Google Scholar 

  12. E. Maciak, Sensors 19, 629 (2019). https://doi.org/10.3390/s19030629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. I. A. Prikhno, E. Yu. Safronova, I. A. Stenina, P. A. Yurova, and A. B. Yaroslavtsev, Membr. Membr. Technol. 2, 265 (2020). https://doi.org/10.1134/S2517751620040095

    Article  CAS  Google Scholar 

  14. G. Zhang, G. Yang, Q. Shen, S. Li, Z. Li, J. Liao, Z. Jiang, H. Wang, H. Zhang, and W. Ye, J. Power Sources 542, 231740 (2022). https://doi.org/10.1016/j.jpowsour.2022.231740

    Article  CAS  Google Scholar 

  15. T. Okada, S. Moller-Holst, O. Gorseth, and S. Kjelstrup, J. Electroanal. Chem. 442, 137 (1998). https://doi.org/10.1016/S0022-0728(97)00499-3

    Article  CAS  Google Scholar 

  16. C. C. Tai, C. L. Chen, and C. W. Liu, Int. J. Hydrog. Energy 42, 3981 (2017). https://doi.org/10.1016/j.ijhydene.2016.11.047

    Article  CAS  Google Scholar 

  17. W. M. Yan, H. S. Chu, Y. L. Liu, F. Chen, and J. H. Jang, Int. J. Hydrog. Energy 36, 5435 (2011). https://doi.org/10.1016/j.ijhydene.2011.01.158

    Article  CAS  Google Scholar 

  18. P. Yu. Apel’, S. Velizarov, A. V. Volkov, T. V. Eliseeva, V. V. Nikonenko, A. V. Parshina, N. D. Pis’menskaya, K. I. Popov, and A. B. Yaroslavtsev, Membr. Membr. Technol. 4, 69 (2022). https://doi.org/10.1134/S2517751622020032

    Article  Google Scholar 

  19. M. Vijayakumar, M. S. Bhuvaneswari, P. Nachimuthu, B. Schwenzer, S. Kim, Z. Yang, Z. Liu, G. L. Graff, S. Thevuthasan, and J. Hu, J. Membr. Sci. 366, 325 (2011). https://doi.org/10.1016/j.memsci.2010.10.01

    Article  CAS  Google Scholar 

  20. M. Vijayakumar, S. D. Burton, C. Huang, L. Li, Z. Yang, G. L. Graff, J. Liu, J. Hu, and M. Skyllas-Kazacos, J. Power Sources 95, 709 (2010). https://doi.org/10.1016/j.jpowsour.2010.05.008

    Article  CAS  Google Scholar 

  21. A. R. Crothers, C. J. Radke, and A. Z. Weber, J. Phys. Chem. C 121, 28262 (2017). https://doi.org/10.1021/acs.jpcc.7b07360

    Article  CAS  Google Scholar 

  22. T. Mabuchi and T. Tokumasu, J. Phys. Chem. B 122, 5922 (2018). https://doi.org/10.1021/acs.jpcb.8b02318

    Article  CAS  PubMed  Google Scholar 

  23. S. Shi, A. Z. Weber, and A. Kusoglu, Electrochim. Acta 220, 517 (2016). https://doi.org/10.1016/J.ELECTACTA.2016.10.096

    Article  CAS  Google Scholar 

  24. L. Wu, T. Luo, X. Yang, H. Zhao, X. Wang, and Z. Zhang, Sep. Purif. Technol. 316, 123816 (2023). https://doi.org/10.1016/j.seppur.2023.123816

    Article  CAS  Google Scholar 

  25. X. T. Le, J. Membr. Sci. 3978, 66 (2012). https://doi.org/10.1016/j.memsci.2012.01.011

    Article  CAS  Google Scholar 

  26. D. E. Curtin, R. D. Lousenberg, T. J. Henry, P. C. Tangeman, and M. E. Tisack, J. Powed Sources 131, 41 (2004). www.sciencedirect.com/science/article/pii/ S0378775304000175.

  27. A. V. Parshina, E. A. Ryzhkova, E. Yu. Safronova, D. V. Safronov, A. A. Lysova, O. V. Bobreshova, and A. B. Yaroslavtsev, Pet. Chem. 55, 816 (2015). https://doi.org/10.1134/S0965544115100175

    Article  CAS  Google Scholar 

  28. S. Subianto, M. Pica, M. Casciola, P. Cojocaru, L. Merlo, G. Hards, and D. J. Jones, J. Power Sources 233, 216 (2013). https://doi.org/10.1016/j.jpowsour.2012.12.121

    Article  CAS  Google Scholar 

  29. M. Yue, S. Jemei, N. Zerhouni, and R. Gouriveau, Renew. Energy 179, 2277 (2021). https://doi.org/10.1016/j.renene.2021.08.045

    Article  Google Scholar 

  30. R. B. Moore and C. R. Martin, Anal. Chem. 58, 2569 (1986). https://doi.org/10.1021/ac00125a046

    Article  CAS  Google Scholar 

  31. C. Welch, A. Labouriau, R. Hjelm, B. Orler, C. Johnston, and Y. S. Kim, ACS Macro Lett. 1, 1403 (2012). https://doi.org/10.1021/mz3005204

    Article  CAS  PubMed  Google Scholar 

  32. B. Loppinet, G. Gebel, and C. E. Williams, J. Phys. Chem. B 101, 1884 (1997). https://doi.org/10.1021/jp9623047

    Article  CAS  Google Scholar 

  33. S. A. Berlinger, P. J. Dudenas, A. Bird, X. Chen, G. Freychet, B. D. McCloskey, A. Kusoglu, and A. Z. Weber, ACS Appl. Polym. Mater. 2, 5824 (2020). https://doi.org/10.1021/acsapm.0c01076

    Article  CAS  Google Scholar 

  34. F. M. Collette, F. Thominette, H. Mendil-Jakani, and G. Gebel, J. Membr. Sci. 435, 242 (2013). https://doi.org/10.1016/j.memsci.2013.02.002

    Article  CAS  Google Scholar 

  35. A. Tarokh, K. Karan, S. Ponnurangam, and M. D. Ato-mistic, Macromolecules 53, 288 (2020). https://doi.org/10.1021/acs.macromol.9b01663

    Article  CAS  Google Scholar 

  36. H.-L. Lin, T. L. Yu, C.-H. Huang, and T.-L. Lin, J. Polym. Sci. B 43, 3044 (2005). https://doi.org/10.1002/polb.20599

    Article  CAS  Google Scholar 

  37. Y. S. Kim, C. F. Welch, R. P. Hjelm, N. H. Mack, A. Labouriau, and E. B. Orler, Macromolecules 48, 2161 (2015). https://doi.org/10.1021/ma502538k

    Article  CAS  Google Scholar 

  38. E. Yu. Safronova, D. Yu. Voropaeva, D. V. Safronov, N. Stretton, A. V. Parshina, and A. B. Yaroslavtsev, Membranes 13, 13 (2023). https://doi.org/10.3390/MEMBRANES13010013

    Article  CAS  Google Scholar 

  39. A. Skulimowska, M. Dupont, M. Zaton, S. Sunde, L. Merlo, D. J. Jones, and J. Rozière, Int. J. Hydrogen Energy 39, 6307 (2014). https://doi.org/10.1016/j.ijhydene.2014.02.082

    Article  CAS  Google Scholar 

  40. A. Parshina, E. Safronova, A. Osipov, E. Lapshina, A. Yelnikova, O. Bobreshova, and A. Yaroslavtsev, Membranes 9, 142 (2019). https://doi.org/10.3390/membranes9110142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. I. A. Stenina and A. B. Yaroslavtsev, Membranes 11, 198 (2021). https://doi.org/10.3390/membranes11030198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. I. A. Stenina and A. B. Yaroslavtsev, Inorg. Mater. 53, 253 (2017). https://doi.org/10.1134/S0020168517030104

    Article  CAS  Google Scholar 

  43. G. Suresh, Y. Scindia, A. Pandey, and A. Goswami, J. Membr. Sci. 250, 39 (2005). https://doi.org/10.1016/j.memsci.2004.10.013

    Article  CAS  Google Scholar 

  44. N. Agmon, Chem. Phys. Lett. 244, 456 (1995). https://doi.org/10.1016/0009-2614(95)00905-J

    Article  CAS  Google Scholar 

  45. M. Legras, Y. Hirata, Q. T. Nguyen, D. Langevin, and M. Métayer, Desalination 147, 351 (2002). https://doi.org/10.1016/S0011-9164(02)00608-2

    Article  CAS  Google Scholar 

  46. E. Yu. Safronova, A. K. Osipov, and A. B. Yaroslavtsev, Pet. Chem. 58, 130 (2018). https://doi.org/10.1134/S0965544118020044

    Article  CAS  Google Scholar 

Download references

Funding

The study was supported the Russian Science Foundation, grant no. 21-73-10149, https://rscf.ru/project/21-73-10149.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Parshina.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Avdeeva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parshina, A.V., Safronova, E.Y., Yelnikova, A.S. et al. Effect of the Nature of Counterion on Properties of Perfluorosulfonic Acid Membranes with Long and Short Side Chains. Membr. Membr. Technol. 5, 323–332 (2023). https://doi.org/10.1134/S2517751623050062

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2517751623050062

Keywords:

Navigation