Log in

The Hydrochemistry and Hydrobiology of Technogenic Reservoirs at Mining Territories of the Southeastern Transbaikal Region

  • WATER ECOSYSTEMS OF ARID TERRITORIES
  • Published:
Arid Ecosystems Aims and scope Submit manuscript

Abstract

Reservoirs of anthropogenic genesis are a special component of the technogenic landscape. Their environmental conditions differ from those of natural water bodies. Such differences include a limited catchment area and a low thickness of bottom sediments, as well as high contents of metals, metalloids, and salts. The objects of our research are various lake formations that formed during the development of mineral deposits in the Eastern Transbaikal region. This article describes the chemical composition of the waters and the species diversity and the structure of hydrobiont communities that are different in their formation and purpose of technogenic reservoirs of mining areas. Algae and zooplankton of technogenic water bodies in a region with an arid climate have been studied for the first time. The studied waters have a variety of morphometric and physicochemical characteristics with a wide range of pH values (2.99–8.80), total mineralization (85.9–9065 mg/L), and content of ore and associated elements. According to the chemical composition, the waters are sulphate and bicarbonate-sulphate, with different ratios of magnesium and calcium. The species diversity of the algae and zooplankton of the studied water bodies is low (75 taxa of plankton algae, 8 taxa of macroalgae, and 63 species and subspecies of plankton invertebrates). This is associated with extreme environmental conditions, where species richness is influenced by physicochemical conditions of the habitat. The determining factors for the development of Cryptophyta representatives are micro- and macrocomponent composition and general mineralization, for other groups of phytoplankton (Cyanobacteria, Bacillariophyta, Chrysophyta, Charophyta, Chlorophyta, Euglenophyta, and Dynophyta) it was the content of bicarbonates. Quantitative indicators of zooplankton are positively related to the concentration of ammonium nitrogen (for Crustacea) and negatively to pH (Rotifera).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Afonina, E.Yu. and Itigilova, M.Ts., Species composition of Rotifera and crustaceous of the Shilka river basin, Zap. Zabaik. Otdel. Geogr. O-va, 2012, no. 131, pp. 40–51.

  2. Afonina, E.Yu., and Afonin, A.V., Fauna of fishes and planktonic invertebrates in some tributaries of the upper Onon river (Zabaikalsky krai), Amur. Zool. Zh., 2015, vol. VII, no. 1, pp. 3–13.

    Google Scholar 

  3. Afonina, E.Yu. and Afonin, A.V., Assessment of hydrobiocenoses in the small rivers of Argun river basin, Teoreticheskaya i Prikladnaya Ekologiya, 2017, no. 3, pp. 57–65.

  4. Balushkina, E.V. and Vinberg, G.G., Relationship between length and body weight of planktonic crustaceans, in Eksperimental’nye i polevye issledovaniya biologicheskikh osnov produktivnosti ozer (Experimental and Field Studies of the Biological Foundations of Lake Productivity), Vinberg, G.G., Ed., Leningrad: Nauka, 1979, pp. 58–79.

  5. Beulker, C., Lessmann, D., and Nixdorf, B., Aspects of phytoplankton succession and spatial distribution in an acidic mining lake (Plessa 117, Germany), Acta Oecologica, 2003, vol. 24, pp. 25–31.

    Article  Google Scholar 

  6. Bielańska-Grajner, I., and Gładysz, A., Planktonic rotifers in mining lakes in the Silesian Upland: relationship to environmental parameters, Limnologica, 2010, vol. 40, pp. 67–72.

    Article  Google Scholar 

  7. Blanchette, M.L. and Lund, M.A., Pit lakes are a global legacy of mining: An integrated approach to achieving sustainable ecosystems and value for communities, Current Opinion in Environmental Sustainability, 2016, vol. 23, pp. 28–34.

    Article  Google Scholar 

  8. Chechel’, L.P., Formation of hydrogeochemical fields of tungsten deposits in Eastern Transbaikalia under the influence of natural and anthropogenic factors, Cand. Sci. (Geol.-Mineral.) Dissertation, Chita: Inst. Prorodnykh Resursov, Ekologii I KriologiiI Sibirskogo Otdeleniya Ross. Akad. Nauk, 2020.

  9. Chechel’, L.P. and Zamana, L.V., Main geochemical types of drainage waters of tungsten deposits in Southeast Transbaikalia, Vestn. Tomsk. Gos. Univ., 2009, no. 329, pp. 271–277.

  10. Deneke, R., Review of rotifers and crustaceans in highly acidic environments of pH values ≤ 3, Hydrobiologia, 2000, vol. 433, pp. 167–172.

    Article  Google Scholar 

  11. El-Bassat, R.A. and Taylor, W.D., The zooplankton community of Lake Abo Zaabal, a newly-formed mining lake in Cairo, Egypt, Afr. J. Aquat. Sci., 2007, vol. 32, no. 2, pp. 1–8.

    Article  Google Scholar 

  12. Ferrari, C.R., de Azevedo, H., Wisniewski, M.J.S., Rodgher, S., Roque, C.V., and Nascimento, M.R.L., An overview of an acidic uranium mine pit lake (Caldas, Brazil): Composition of the zooplankton community and limnochemical aspects, Mine Water Environ., 2015, vol. 34, pp. 343–351.

    Article  CAS  Google Scholar 

  13. Gabyshev, V.A. and Gabysheva, O.I., On the study of the effects of heavy metals on the growth of lake phytoplankton in Yakutsk and its vicinity, Prirodnye Resursy Arktiki i Subarktiki, 2020, vol. 25, no 4, pp. 81–91.

    Google Scholar 

  14. Gammons, C.H., Harris, L.N., Castro, J.M., Cott, P.A., and Hanna, B.W., Creating lakes from open pit mines: Processes and considerations – with emphasis on northern environments, Canadian Technical Report of Fisheries and Aquatic Sciences 2826. http://digitalcommons.mtech.edu/geol_engr/2. Cited April 13, 2022.

  15. Goździejewska, A.M., Koszałka, J., Tandyrak, R., Grochowska, J., and Parszuto, K., Functional responses of zooplankton communities to depth, trophic status, and ion content in mine pit lakes, Hydrobiologia, 2021, vol. 848, pp. 2699–2719.

    Article  Google Scholar 

  16. Grishchenko, N.S., Klassifikatsiya antropogennykh vodoemov po urovnyu tekhnicheskogo obustroistva (tekhnizirovannosti) (Classification of Anthropogenic Reservoirs According to the Level of Technical Arrangement (Technicalization)), Moscow: Melioratsiya i Vodnoe Khozyaistvo, 1999.

  17. Guiry, M.D. and Guiry, G.M., AlgaeBase. http://www.algaebase.org. Cited November 20, 2021.

  18. Kalin, M., Cao, C., Smith, M.P., and Olaveson, M.M., Development of the phytoplankton community in a pit-lake in relation to water quality changes, Water Res., 2001, vol. 35, no. 13, 3215–3225.

    Article  CAS  PubMed  Google Scholar 

  19. Kiselev, I.A., Plankton morei i kontinental’nykh vodoemov (Plankton of the Seas and Continental Waters), Leningrad: Nauka, 1969, vol. 1.

  20. Kopyrina, L.I., Structure and species composition of algae of technogenic reservoirs (Anabar river basin, North-West Yakutia), Sovremennye Problemy Nauki i Obrazovaniya, 2016, no. 4, pp. 207–213.

  21. Kuklin, A.P., Macroscopic algae in the reservoirs of the Sokhondinsky Reserve and the protected zone, in Sbornik trudov Sokhondinskogo zapovednika issledovaniya v okhrannoi zone (Proc. Sokhondinsky Reserve Research in the Buffer Zone), Chita: Ekspress-Izdatel’stvo, 2014, pp. 31–43.

  22. Kumar, R.N., McCullough, C.D., and Lund, M.A., Water resources in Australian mine pit lakes, Min. Technol., 2009, vol. 118, pp. 205–211.

    Article  Google Scholar 

  23. Leppänen, J.J., An overview of cladoceran studies conducted in mine water impacted lakes, Int. Aqua. Res., 2018, vol. 10, pp. 207–221.

    Article  Google Scholar 

  24. Lessmann, D., Fyson, A., and Nixdorf, B., Phytoplankton of the extremely acidic mining lakes of Lusatia (Germany) with pH ≤ 3, Hydrobiologia, 2000, vol. 433, pp. 123–128.

    Article  Google Scholar 

  25. Moser, M. and Weisse, T., The most acidified Austrian lake in comparison to a neutralized mining lake, Limnologica, 2011, vol. 41, pp. 303–315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nixdorf, B., Fyson, A., and Krumbeck, H., Review: Plant life in extremely acidic waters, Environ. Exp. Bot., 2001, vol. 46, 203–211.

    Article  CAS  Google Scholar 

  27. Nixdorf, B., Krumbeck, H., Jander, J., and Beulker, C., Comparison of bacterial and phytoplankton productivity in extremely acidic mining lakes and eutrophic hard water lakes, Acta Oecologica, 2003, vol. 24, pp. 281–288.

    Article  Google Scholar 

  28. Paulsson, O. and Widerlund, A., Algal nutrient limitation and metal uptake experiment in the Åkerberg pit lake, Northern Sweden, Appl. Geochem., 2021, vol. 125, p. 104829.

    Article  CAS  Google Scholar 

  29. Pociecha, A., Bielańska‑Grajner, I., Szarek-Gwiazda, E., Wilk‑Woźniak, E., Kuciel, H., and Walusiak, E., Rotifer diversity in the acidic pyrite mine pit lakes in the Sudety Mountains (Poland), Mine Water Env., 2018, vol. 37, pp. 518–527.

    Article  CAS  Google Scholar 

  30. Ramanchuk, A.I., Makarevich, T.A., Khomitch, S., Machowski, R., Rzetala, M.A., and Rzetala, M., Methodological approaches to phytomediation of productive processes in chalk quarry reservoirs of Belarus, Ecol. Indic., 2021, vol. 129, p. 107995.

    Article  CAS  Google Scholar 

  31. Romanov, R.E., Ermolaeva, N.E., and Bortnikova, S.B., Evaluaiton of the effect of heavy metals on the plankton in the technogenic water reservoir, Khim. Interesakh Ustoich. Razvit., 2011, no 19, pp. 305–312.

  32. Rönicke, H., Schultze, M., Neumann, V., Nitsche, C., and Tittel, J., Changes of the plankton community composition during chemical neutralization of the Bockwitz pit lake, Limnologica, 2010, vol. 40, pp. 191–198.

    Article  Google Scholar 

  33. Ruttner-Kolisko, A., Suggestions for biomass calculation of plankton rotifers, Archiv für Hydrobiologie Beihefte: Ergebnisse der Limnologie, 1977, vol. 8, pp. 71–76.

    Google Scholar 

  34. Sadchikov, A.P., Metody izucheniya presnovodnogo fitoplanktona (Methods for Studying Freshwater Phytoplankton), Moscow: Universitet i Shkola, 2003.

  35. Seckbach, J., Chapman, D.J., Garbary, D.J., Oren, A., and Reisser, W., Algae and cyanobacteria under environmental extremes: Final comments, in Algae and Cyanobacteria in Extreme Environments. Cellular Origin, Life in Extreme Habitats and Astrobiology, Seckbach, J., Ed., Dordrecht: Springer, vol. 11, pp. 783–786.

  36. Sharov, A.N., Phytoplankton of cold-water lake ecosystems under the influence of natural and anthropogenic factors, Doctoral (Biol.) Dissertation, St. Petersburg: Scientific Research Center of Ecol. Security Russ. Acad. Sci., 2020.

  37. She, Z., Pan, X., Wang, J., Shao, R., Wang, G., Wang, S., and Yue, Z., Vertical environmental gradient drives prokaryotic microbial community assembly and species coexistence in a stratified acid mine drainage lake, Water Res., 2021, vol. 206, p. 117739.

    Article  CAS  PubMed  Google Scholar 

  38. Shipunov, A.B., Baldin, E.M., Volkova, P.A., Korobeinikov, A.I., Nazarova, S.A., Petrov, S.V., and Sufiyanov V.G., Naglyadnaya statistika, ispol’zuem R! (Visual Statistics, Use R!), Moscow: DMK Press, 2014.

  39. Skrzypczak, A.R. and Napiόrkowska-Krzebietke, A., Identification of hydrochemical and hydrobiological properties of mine waters for use in aquaculture, Aquaculture Reports, 2020, vol. 18, p. 100460.

    Article  Google Scholar 

  40. Solodukhina, M.A., and Pomazkova, N.V., Landscapes of Sherlovogorskaya ore district of the Zabaikalsky Krai, Uspekhi Sovremennogo Estestvoznaniya, 2014, no. 9, pp. 70–78.

  41. Udachin, V.N., Aminov, P.G., and Deryagin, V.V., Chemical composition of technogenic waters in quarry lakes of Bashkortostan, Bashk. Khim. Zh., 2008, vol. 15, no. 4, pp. 64–69.

    CAS  Google Scholar 

  42. Udachin, V.N., Aminov, P.G., Lonshchakova, G.F., and Deryagin, V.V., Distribution of physical and chemical parameters in quarry lakes of sulphide ore fields Blyavinskoye and Yaman-Kosinskoye (The South Urals), Vestn. Orenburgskogo Gos. Univ., 2009, no. 5, pp. 167–172.

  43. Vodorosli. Spravochnik (Seaweed. Handbook), Vasser, S.P, Kondrat’ev, N.V, and Masyuk, N.P, Eds., Kyiv: Naukova Dumka, 1989.

  44. Weithoff, G., Moser, M., Kamjunke, N., Gaedke, U., and Weisse, T., Lake morphometry and wind exposure may shape the plankton community structure in acidic mining lakes, Limnologica, 2010, vol. 40, pp. 161–166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wollmann, K., Deneke, R., Nixdorf, B., and Packroff, G., Dynamics of planktonic food webs in three mining lakes across a pH gradient (pH 2–4), Hydrobiologia, 2000, vol. 433, pp. 3–14.

    Article  CAS  Google Scholar 

  46. WoRMS: World Register of Marine Species. http://www.marinespecies.org. Cited April 13, 2022.

  47. Zamana, L.V. and Chechel’, L.P., Hydrogeochemical features of the zone technogenesis polymetallic deposits Southeastern Transbaikalia, Uspekhi Sovremennogo Estestvoznaniya, 2015, no. 1, pp. 33–38.

  48. Zamana, L.V., Abramova, V.A., Khvostova, T.E., and Chechel’ L.P., Nitrogen compounds in technogenic waters of ore deposits of Transbaikal region, Gornyi Zh., 2020, no. 3, pp. 31–35.

Download references

Funding

The work was carried out within the framework of the State Assignment for Fundamental Scientific Research, State Registration No. 121032200070-2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Yu. Afonina.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interest.

Additional information

Translated by T. Kuznetsova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afonina, E.Y., Tashlykova, N.A., Zamana, L.V. et al. The Hydrochemistry and Hydrobiology of Technogenic Reservoirs at Mining Territories of the Southeastern Transbaikal Region. Arid Ecosyst 12, 505–515 (2022). https://doi.org/10.1134/S2079096122040023

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079096122040023

Keywords:

Navigation