Log in

Evolution of Viruses in Immunized Populations of Vertebrates

  • Published:
Biology Bulletin Reviews Aims and scope Submit manuscript

Abstract

Scientists have described thousands of species of viruses, many of which are pathogens of vertebrates. Given that vertebrates have their highly sophisticated adaptive immune systems capable of memorizing pathogens, interaction with such systems should theoretically be one of the most important factors influencing the evolution of viruses. The review focuses on how acquired immunity (infection-induced and vaccine-induced) affects the most important medical characteristics of viral pathogens—transmissibility, infectivity, and virulence. Both known real examples of the evolution of viruses in immunized populations and theoretical articles and the results of mathematical modeling are considered. Special attention is paid to the SARS-CoV-2 pandemic. Methodological recommendations are given for creating vaccines and conducting vaccination campaigns in the light of the raised evolutionary issues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. André, J.-B. and Gandon, S., Vaccination, within-host dynamics, and virulence evolution, Evolution, 2006, vol. 60, no. 1, pp. 13–23. https://doi.org/10.1111/j.0014-3820.2006.tb01077.x

    Article  PubMed  Google Scholar 

  2. Andreano, E., Piccini, G., Licastro, D., Casalino, L., Johnson, N.V., et al., SARS-CoV-2 escape from a highly neutralizing COVID-19 convalescent plasma, Proc. Natl Acad. Sci. USA, 2021, vol. 118, no. 36, p. e2103154118. https://doi.org/10.1073/pnas.2103154118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Antoulas, A.C., Approximation of large-scale dynamical systems: An overview, IFAC Proceedings Volumes, 2004, vol. 37, no. 11, pp. 19–28. https://doi.org/10.1016/s1474-6670(17)31584-7

  4. Arora, S., Grover, V., Saluja, P., Algarni, Y.A., Saquib, S.A., et al., Literature review of Omicron: A grim reality amidst COVID-19, Microorganisms, 2022, vol. 10, no. 2, p. 451. https://doi.org/10.3390/microorganisms10020451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Aviagen, Marek’s Disease Virus, 2017. https://en.aviagen.com/assets/Tech_Center/Broiler_Breeder_Tech_ Articles/English/MareksDiseaseVirus-2017-EN.pdf.

  6. Butt, A.A., Dargham, S.R., Loka, S., Shaik, R.M., Chemaitelly, H., et al., COVID-19 disease severity in children infected with the Omicron variant, Clin. Infect. Dis., 2022, vol. 75, no. 1, pp. e361–e367. https://doi.org/10.1093/cid/ciac275

    Article  PubMed  Google Scholar 

  7. Cecchinato, M., Catelli, E., Lupini, C., Ricchizzi, E., Clubbe, J., et al., Avian metapneumovirus (AMPV) attachment protein involvement in probable virus evolution concurrent with mass live vaccine introduction, Vet. Microbiol., 2010, vol. 146, no. 1–2, pp. 24–34. https://doi.org/10.1016/j.vetmic.2010.04.014

    Article  CAS  PubMed  Google Scholar 

  8. Cele, S., Karim, F., Lustig, G., San, J.E., Hermanus, T., et al., SARS-CoV-2 prolonged infection during advanced HIV disease evolves extensive immune escape, Cell Host Microbe, 2022, vol. 30, no. 2, pp. 154–162. https://doi.org/10.1016/j.chom.2022.01.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chinesta, F., Huerta, A., Rozza, G., and Wilcox, K., Model reduction methods, in Encyclopedia of Computational Mechanics Second Edition, Stein, E., Borst, R., and Hughes, T.J.R., Eds., Hoboken: Wiley, 2017. https://doi.org/10.1002/9781119176817.ecm2110

  10. Cloete, J., Kruger, A., Masha, M., Du Plessis, N.M., Mawela, D., et al., Paediatric hospitalisations due to COVID-19 during the first SARS-CoV-2 omicron (B.1.1.529) variant wave in South Africa: A multicentre observational study, Lancet Child Adolesc. Health, 2022, vol. 6, no. 5, pp. 294–302. https://doi.org/10.1016/S2352-4642(22)00027-X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Coyne, K.P., Reed, F.C., Porter, C.J., Dawson, S., Gaskell, R.M., and Radford, A.D., Recombination of Feline calicivirus within an endemically infected cat colony, J. Gen. Virol., 2006, vol. 87, no. 4, pp. 921–926. https://doi.org/10.1099/vir.0.81537-0

    Article  CAS  PubMed  Google Scholar 

  12. Crépey, P., Noël, H., and Alizon, S., Challenges for mathematical epidemiological modelling, Anaesthesia Critical Care Pain Med., 2022, vol. 41, no. 2, p. 101053. https://doi.org/10.1016/j.accpm.2022.101053

    Article  Google Scholar 

  13. Davison, F. and Nair, V., Marek’s Disease: An Evolving Problem, Amsterdam: Elsevier, 2004.

    Google Scholar 

  14. Day, T., Parasite transmission modes and the evolution of virulence, Evolution, 2001, vol. 55, pp. 2389–2400. https://doi.org/10.1111/j.0014-3820.2001.tb00754.x

    Article  CAS  PubMed  Google Scholar 

  15. Dimmock, N.J., Easton, A.J., and Leppard, K.N., Introduction to Modern Virology, Malden: Blackwell Publishing, 2007, 6th ed.

    Google Scholar 

  16. Du, X., Tang, H., Gao, L., Wu, Z., Meng, F., et al., Omicron adopts a different strategy from Delta and other variants to adapt to host, Signal Transduction Targeted Ther., 2022, vol. 7, no. 1, p. 45. https://doi.org/10.1038/s41392-022-00903-5

    Article  CAS  Google Scholar 

  17. Egeren, D. van, Novokhodko, A., Stoddard, M., Tran, U., Zetter, B., et al., Risk of rapid evolutionary escape from biomedical interventions targeting SARS-CoV-2 spike protein, PLoS One, 2021, vol. 16, no. 4, p. e0250780. https://doi.org/10.1371/journal.pone.0250780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. El-Diwany, R., Cohen, V.J., Mankowski, M.C., Wasilewski, L.N., Brady, J.K., et al., Extra-epitopic hepatitis C virus polymorphisms confer resistance to broadly neutralizing antibodies by modulating binding to scavenger receptor B1, PLoS Pathog., 2017, vol. 13, no. 2, p. e1006235. https://doi.org/10.1371/journal.ppat.1006235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ewald, P.W., Transmission modes and the evolution of virulence, Human Nature, 1991, vol. 2, pp. 1–30. https://doi.org/10.1007/BF02692179

    Article  CAS  PubMed  Google Scholar 

  20. Ewald, P.W., The evolution of virulence, Sci. Am., 1993, vol. 268, no. 4, pp. 86–93. http://www.jstor.org/stable/24941444.

    Article  CAS  PubMed  Google Scholar 

  21. Franceschi, C., Valensin, S., Fagnoni, F., Barbi, C., and Bonafè, M., Biomarkers of immunosenescence within an evolutionary perspective: The challenge of heterogeneity and the role of antigenic load, Exp. Gerontol., 1999, vol. 34, no. 8, pp. 911–921. https://doi.org/10.1016/S0531-5565(99)00068-6

    Article  CAS  PubMed  Google Scholar 

  22. Franzo, G., Tucciarone, C., Cecchinato, M., and Drigo, M., Porcine circovirus type 2 (PCV2) evolution before and after the vaccination introduction: A large scale epidemiological study, Sci. Rep., 2016, vol. 6. https://doi.org/10.1038/srep39458

  23. Franzo, G., Legnardi, M., Tucciarone, C.M., Drigo, M., Martini, M., and Cecchinato, M., Evolution of infectious bronchitis virus in the field after homologous vaccination introduction, Vet. Res., 2019, vol. 50, p. 92. https://doi.org/10.1186/s13567-019-0713-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Frasca, D., Reidy, L., Romero, M., Diaz, A., Cray, C., et al., The majority of SARS-CoV-2-specific antibodies in COVID-19 patients with obesity are autoimmune and not neutralizing, Int. J. Obes., 2022, vol. 46, pp. 427–432. https://doi.org/10.1038/s41366-021-01016-9

    Article  CAS  Google Scholar 

  25. Garcia-Beltran, W.F., Lam, E.C., St Denis, K., Nitido, A.D., Garcia, Z.H., et al., Multiple SARS-CoV-2 variants escape neutralization by vaccine-induced humoral immunity, Cell, 2021, vol. 184, no. 9, pp. 2372–2383. https://doi.org/10.1016/j.cell.2021.03.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ghosh, D., Bernstein, J.A., and Mersha, T.B., COVID-19 pandemic: The African paradox, J. Global Health, 2020, vol. 10, no. 2, p. 020348. https://doi.org/10.7189/jogh.10.020348

    Article  Google Scholar 

  27. Ginaldi, L., Martinis, M. de, Monti, D., and Franceschi, C., Chronic antigenic load and apoptosis in immunosenescence, Trends Immunol., 2005, vol. 26, no. 2, pp. 79–84. https://doi.org/10.1016/j.it.2004.11.005

    Article  CAS  PubMed  Google Scholar 

  28. Grabowski, F., Kochańczyk, M., and Lipniacki, T., The spread of SARS-CoV-2 variant Omicron with a doubling time of 2.0–3.3 days can be explained by immune evasion, Viruses, 2022, vol. 14, no. 2, p. 294. https://doi.org/10.3390/v14020294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Grenfell, B.T., Pybus, O.G., Gog, J.R., Wood, J.L.N., Daly, J.M., et al., Unifying the epidemiological and evolutionary dynamics of pathogens, Science, 2004, vol. 303, no. 5656, pp. 327–332.

    Article  CAS  PubMed  Google Scholar 

  30. Hie, B., Zhong, E.D., Berger, B., and Bryson, B., Learning the language of viral evolution and escape, Science, 2021, vol. 371, no. 6526, pp. 284–288. https://doi.org/10.1126/science.abd7331

    Article  CAS  PubMed  Google Scholar 

  31. Hoffman, S.A., Costales, C., Sahoo, M.K., Palanisamy, S., Yamamoto, F., et al., SARS-CoV-2 neutralization resistance mutations in patient with HIV/AIDS, California, USA, Emerging Infect. Dis., 2021, vol. 27, no. 10, pp. 2720−2723. https://doi.org/10.3201/eid2710.211461

    Article  CAS  Google Scholar 

  32. Hui, K.P.Y., Ho, J.C.W., Cheung, M.C., Ng, K.C., Ching, R.H.H., et al., SARS-CoV-2 Omicron variant replication in human bronchus and lung ex vivo, Nature, 2022, vol. 603, no. 7902, pp. 715−720. https://doi.org/10.1038/s41586-022-04479-6

    Article  CAS  PubMed  Google Scholar 

  33. Jackson, B., Boni, M.F., Bull, M.J., Colleran, A., Colquhoun, R.M., et al., Generation and transmission of interlineage recombinants in the SARS-CoV-2 pandemic, Cell, 2021, vol. 184, no. 20, pp. 5179−5188. https://doi.org/10.1016/j.cell.2021.08.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jacobson, K.B., Pinsky, B.A., Rath, M.E.M., Wang, H., Miller, J.A., et al., Post-vaccination SARS-CoV-2 infections and incidence of the B.1.427/B.1.429 variant among healthcare personnel at a northern California academic medical center, medRxiv, 2021. https://doi.org/10.1101/2021.04.14.21255431

  35. Kemp, S.A., Collier, D.A., Datir, R.P., Ferreira, I.A.T.M., Gayed, S., et al., SARS-CoV-2 evolution during treatment of chronic infection, Nature, 2021, vol. 592, no. 7853, pp. 277−282. https://doi.org/10.1038/s41586-021-03291-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kennedy, D.A. and Read, A.F., Why does drug resistance readily evolve but vaccine resistance does not?, Proc. R. Soc. B., 2017, vol. 284, no. 1851. https://doi.org/10.1098/rspb.2016.2562

  37. Kostoff, R.N., Kanduc, D., Porter, A.L., Shoenfeld, Y., and Briggs, M.B., COVID-19 Vaccine Safety Considerations, Atlanta: Georgia Institute of Technology, 2020. http://hdl.handle.net/1853/63710

    Google Scholar 

  38. Lai, M.M.C., Recombination in large RNA viruses: Coronaviruses, Semin. Virol., 1996, vol. 7, no. 6, pp. 381−388. https://doi.org/10.1006/smvy.1996.0046

    Article  CAS  PubMed Central  Google Scholar 

  39. Legnardi, M., Tucciarone, C.M., Franzo, G., and Cecchinato, M., Infectious bronchitis virus evolution, diagnosis and control, Vet. Sci., 2020, vol. 7, no. 2, p. 79. https://doi.org/10.3390/vetsci7020079

    Article  PubMed  PubMed Central  Google Scholar 

  40. Liu, J.L. and Kung, H.J., Marek’s disease herpesvirus transforming protein MEQ: A c-Jun analogue with an alternative life style, Virus Genes, 2000, vol. 21, nos. 1–2, pp. 51−64.

    Article  PubMed  Google Scholar 

  41. Liu, Q., Zhou, Y.H., and Yang, Z.Q., The cytokine storm of severe influenza and development of immunomodulatory therapy, Cell. Mol. Immunol., 2016, vol. 13, no. 1, pp. 3–10. https://doi.org/10.1038/cmi.2015.74

    Article  CAS  PubMed  Google Scholar 

  42. Marakasova, E., Baranova, A., and Pirofski, L., MMR vaccine and COVID-19: Measles protein homology may contribute to cross-reactivity or to complement activation protection, mBio, 2021, vol. 12, no. 1. https://doi.org/10.1128/mBio.03447-20

  43. McMillan, P., Dexhiemer, T., Neubig, R.R., and Uhal, B.D., COVID-19—A theory of autoimmunity against ACE-2 explained, Front. Immunol., 2021, vol. 12, p. 582166. https://doi.org/10.3389/fimmu.2021.582166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mlcochova, P., Kemp, S.A., Dhar, M.S., Papa, G., Meng, B., et al., SARS-CoV-2 B.1.617.2 Delta variant replication and immune evasion, Nature, 2021, vol. 599, pp. 114–119. https://doi.org/10.1038/s41586-021-03944-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Morán Blanco, J.I., Alvarenga Bonilla, J.A., Homma, S., Suzuki, K., Fremont-Smith, P., and Villar Gómez de las Heras, K., Antihistamines and azithromycin as a treatment for COVID-19 on primary health care—A retrospective observational study in elderly patients, Pulm. Pharmacol. Ther., 2021, vol. 67, p. 101989. https://doi.org/10.1016/j.pupt.2021.101989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ossiboff, R.J., Sheh, A., Shotton, J., Pesavento, P.A., and Parker, J.S.L., Feline caliciviruses (FCVs) isolated from cats with virulent systemic disease possess in vitro phenotypes distinct from those of other FCV isolates, J. Gen. Virol., 2007, vol. 88, no. 2, pp. 506−517. https://doi.org/10.1099/vir.0.82488-0

    Article  CAS  PubMed  Google Scholar 

  47. Plans Rubió, P., Is the basic reproductive number (R0) for measles viruses observed in recent outbreaks lower than in the pre-vaccination era?, Eurosurveillance, 2012, vol. 17, no. 31, p. 20233. https://doi.org/10.2807/ese.17.31.20233-en

    Article  PubMed  Google Scholar 

  48. Radford, A.D., Dawson, S., Coyne, K.P., Porter, C.J., and Gaskell, R.M., The challenge for the next generation of feline calicivirus vaccines, Vet. Microbiol., 2006, vol. 117, no. 1, pp. 14–18. https://doi.org/10.1016/j.vetmic.2006.04.004

    Article  CAS  PubMed  Google Scholar 

  49. Radford, A.D., Coyne, K.P., Dawson, S., Porter, C.J., and Gaskell, R.M., Feline calicivirus, Vet. Res., 2007, vol. 38, no. 2, pp. 319−335. https://doi.org/10.1051/vetres:2006056

    Article  CAS  PubMed  Google Scholar 

  50. Ragia, G. and Manolopoulos, V.G., Inhibition of SARS-CoV-2 entry through the ACE2/TMPRSS2 pathway: A promising approach for uncovering early COVID-19 drug therapies, Eur. J. Clin. Pharmacol., 2020, vol. 76, pp. 1623–1630. https://doi.org/10.1007/s00228-020-02963-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Read, A.F., Pathogen evolution in a vaccinated world, 2016. https://www.youtube.com/watch?v=TeyxhehhEuo.

  52. Read, A.F., Baigent, S.J., Powers, C., Kgosana, L.B., Blackwell, L., et al., Imperfect vaccination can enhance the transmission of highly virulent pathogens, PLoS Biol., 2015, vol. 13, no. 7, p. e1002198. https://doi.org/10.1371/journal.pbio.1002198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sasaki, A., Lion, S., and Boots, M., Antigenic escape selects for the evolution of higher pathogen transmission and virulence, Nat. Ecol. Evol., 2022, vol. 6, pp. 51–62. https://doi.org/10.1038/s41559-021-01603-z

    Article  PubMed  Google Scholar 

  54. Scudellari, M., How the coronavirus infects cells—and why Delta is so dangerous, Nature News Feature, 2021. https://www.nature.com/articles/d41586-021-02039-y.

  55. Shamblin, C.E., Greene, N., Arumugaswami, V., Dienglewicz, R.L., and Parcells, M.S., Comparative analysis of Marek’s disease virus (MDV) glycoprotein-, lytic antigen pp38- and transformation antigen Meq-encoding genes: Association of meq mutations with MDVs of high virulence, Vet. Microbiol., 2004, vol. 102, nos. 3–4, pp. 147−167. https://doi.org/10.1016/j.vetmic.2004.06.007

    Article  CAS  PubMed  Google Scholar 

  56. Sharif-Askari, N.S., Sharif-Askari, F.S., Alabed, M., Temsah, M., Heialy, S.A., et al., Airways expression of SARS-CoV-2 receptor, ACE2, and TMPRSS2 is lower in children than adults and increases with smoking and COPD, Mol. Ther.—Methods Clin. Dev., 2020, vol. 18, pp. 1−6. https://doi.org/10.1016/j.omtm.2020.05.013

    Article  CAS  Google Scholar 

  57. Singanayagam, A., Hakki, S., Dunning, J., Madon, K.J., Crone, M.A., et al., Community transmission and viral load kinetics of the SARS-CoV-2 delta (B.1.617.2) variant in vaccinated and unvaccinated individuals in the UK: A prospective, longitudinal, cohort study, Lancet Infect. Dis., 2022, vol. 22, no. 2, pp. 183−195. https://doi.org/10.1016/S1473-3099(21)00648-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sun, Y., Lin, W., Dong, W., Xu, J., Origin and evolutionary analysis of the SARS-CoV-2 Omicron variant, J. Biosaf. Biosecur., 2022, vol. 4, no. 1, pp. 33−37. https://doi.org/10.1016/j.jobb.2021.12.001

    Article  CAS  PubMed  Google Scholar 

  59. Suzuki, R., Yamasoba, D., Kimura, I., Wang, L., Kishimoto, M., et al., Attenuated fusogenicity and pathogenicity of SARS-CoV-2 Omicron variant, Nature, 2022, vol. 603, no. 7902, pp. 700−705. https://doi.org/10.1038/s41586-022-04462-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Swiss Policy Research, 2020. https://swprs.org/why-covid-19-is-a-strange-pandemic/.

  61. Swiss Policy Research, 2021. https://swprs.org/covid-versus-the-flu-revisited/.

  62. Thomine, O., Alizon, S., Boennec, C., Barthelemy, M., and Sofonea, M., Emerging dynamics from high-resolution spatial numerical epidemics, eLife, 2021, vol. 10, p. e71417. https://doi.org/10.7554/eLife.71417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. VanBlargan, L.A., Errico, J.M., Halfmann, P.J., Zost, S.J., Crowe, J.E., Jr., et al., An infectious SARS-CoV-2 B.1.1.529 Omicron virus escapes neutralization by therapeutic monoclonal antibodies, Nat. Med., 2022, vol. 28, no. 3, pp. 490−495. https://doi.org/10.1038/s41591-021-01678-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. WHO, 2020. https://www.who.int/docs/default-source/ coronaviruse/who-china-joint-mission-on-covid-19-final-report.pdf.

  65. Wong, J.P., Viswanathan, S., Wang, M., Sun, L.Q., Clark, G.C., and D’Elia, R.V., Current and future developments in the treatment of virus-induced hypercytokinemia, Future Med. Chem., 2017, vol. 9, no. 2, pp. 169–178. https://doi.org/10.4155/fmc-2016-0181

    Article  CAS  PubMed  Google Scholar 

  66. Yuan, M., Huang, D., Lee, C.D., Wu, N.C., Jackson, A.M., et al., Structural and functional ramifications of antigenic drift in recent SARS-CoV-2 variants, Science, 2021, vol. 373, pp. 818−823. https://doi.org/10.1126/science.abh1139

    Article  CAS  PubMed  Google Scholar 

  67. Zhang, X., Wu, S., Wu, B., Yang, Q., Chen, A., et al., SARS-CoV-2 Omicron strain exhibits potent capabilities for immune evasion and viral entrance, Signal Transduction Targeted Ther., 2021, vol. 6, no. 1, p. 430. https://doi.org/10.1038/s41392-021-00852-5

    Article  CAS  Google Scholar 

  68. Zurita-Gutiérrez, Y.H. and Lion, S., Spatial structure, host heterogeneity and parasite virulence: Implications for vaccine-driven evolution, Ecol. Lett., 2015, vol. 18, pp. 779–789. https://doi.org/10.1111/ele.12455

    Article  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author thanks S.S. Zhukova for organizing a research seminar conducted by the author on the topic of this review, which formed the basis of this text. The author also expresses gratitude to M.E. Goltsman for his recommendation to write this review based on seminar materials and for a number of clarifications on the technical design of the manuscript, as well as for valuable comments on the section on modeling the evolution of viruses. Finally, the author thanks G.A. Bazykin, who read the full text of the manuscript, for valuable comments that helped improve the article.

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. L. Panchenko.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

CONFLICT OF INTEREST

The author of this work declares that he has no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panchenko, P.L. Evolution of Viruses in Immunized Populations of Vertebrates. Biol Bull Rev 14, 43–59 (2024). https://doi.org/10.1134/S2079086424010079

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079086424010079

Navigation