Log in

Species and Intraspecies Level Diversity of Beauveria in Boreal Forests of Northwestern Russia

  • BIODIVERSITY, TAXONOMY, ECOLOGY
  • Published:
Biology Bulletin Reviews Aims and scope Submit manuscript

Abstract—The diversity of entomopathogenic fungi, including, inter alia, members of the genus Beauveria, has been assessed insufficiently in Northwestern Russia. With respect to the contemporary taxonomical changes based on molecular markers, the available data are poor and need to be improved. We have established the species and intraspecies diversity of sixty Beauveria spp. isolates obtained from dead insects collected in Leningrad (2017), Novgorod (2018), Vologda (2018), and Pskov (2013, 2018) oblasts and in the Republic of Karelia (2017). Most fungi were isolated from beetles of the subfamily Scolytinae. Beauveria pseudobassiana was the predominant species in the studied subset (with an occurrence of 75.0%). B. bassiana (13.3%) and B. caledonica (11.7%) were isolated in smaller quantities. The latter species was considered rare for Russia; only one finding has been registered up to this time. Molecular analysis of the Bloc and tef1α loci allowed the designation of a new broad clade within B. pseudobassiana, comprised of haplotypes that had not been published in the nucleotide sequence databases previously. All other clades of the found species have a broad geographical distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

Notes

  1. The values obtained with the BLASTn algorithm when comparing the query sequences with the reference sequences in the GenBank. The first value (query cover) is the percentage of the query sequence that overlaps the reference sequence; the second value (percent identity) denotes the percentage of similarity between the query and reference sequences in the alignment region.

REFERENCES

  1. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J., Basic local alignment search tool, J. Mol. Biol., 1990, vol. 215, pp. 403–410. https://doi.org/10.1016/S0022-2836(05)80360-2

    Article  CAS  PubMed  Google Scholar 

  2. Androsov, G.K., Entomofil’nye griby taezhnykh biogeotsenozov (Entomophilous Fungi of Taiga Ecosystems), St. Petersburg: Sankt-Peterb. Univ., 1992.

  3. Ariyawansa, H.A., Hyde, K.D., Jayasiri, S.C. et al., Fungal diversity notes 111–252—Taxonomic and phylogenetic contributions to fungal taxa, Fungal Diversity, 2015, vol. 75, no. 1, pp. 27–274. https://doi.org/10.1007/s13225-015-0346-5

    Article  Google Scholar 

  4. Balsamo-Crivelli, G., Osservazione sopra una nuova specie di Mucedinea del genere Botrytis, The Bible in Italiano, 1835, vol. 79, p. 125.

    Google Scholar 

  5. Beauverie, J., Notes sur les Muscardines. Sur une muscardine du ver à soie, non produite par le Botrytis bassiana. Étude du Botritys effusa sp. nov., Rapp. Comm. administrative du lab. D’études de la soie, Lyon, 1911, vol. 14, pp. 5–31.

  6. Bespyatova, L.A., Causative agents of horse-flies mycoses in Karelia taiga zone, Extended Abstract of Cand. Sci. (Biol.) Dissertation, St. Petersburg, 1995.

  7. Bissett, J., and Widden, P., A new species of Beauveria isolated from Scottish moorland soil, Can. J. Bot., 1988, vol. 66, no. 2, pp. 361–362. https://doi.org/10.1139/b88-057

    Article  Google Scholar 

  8. Borisov, B.A., Rare species of invertebrate mycoses causal agents: Problems of detection in nature and conservation, in Infektsionnaya patologiya chlenistonogikh: Mat. mezhdunar. konf., St. Petersburg, Pushkin, March 26–29, 2012 (Infection Pathology of Arthropods, Proc. Int. Conf.), St. Petersburg: Vseross. Nauchno-Issled. Inst. Zaschity Rastenii, 2012, pp. 14–17.

  9. Borisov, B.A., Bespyatova, L.A., Bugmyrin, S.V., Levchenko, M.V., and Lednev, G.R., Acaricidal activity of psychrotolerant entomopathogenic anamorphic ascomycetes on adult Ixodes persulcatus, in Bioraznoobrazie parazitov. Trudy Centra parazitologii Instituta problem ekologii i evolyutsii A.N. Severtsova RAN (Biodiversity of Parasites, Proc. Center Parasitol., A.N. Severtsov Inst. Ecol. Evol. Russ. Acad, Sci.), Movsesyan, S., Ed., Moscow: KMK, 2018, vol. 50, pp. 43–46.

  10. Bustamante, D.E., Oliva, M., Leiva, S., Mendoza, J.E., Bobadilla, L., Angulo, G., and Calderon, M.S., Phylogeny and species delimitations in the entomopathogenic genus Beauveria (Hypocreales, Ascomycota), including the description of B. peruviensis sp. nov., MycoKeys, 2019, vol. 58, pp. 47–68. https://doi.org/10.3897/mycokeys.58.35764

    Article  PubMed  PubMed Central  Google Scholar 

  11. Chen, W.H., Han, Y.F., Liang, Z.Q., and **, D.C., A new araneogenous fungus in the genus Beauveria from Guizhou, China, Phytotaxa, 2017, vol. 302, pp. 57–64. https://doi.org/10.11646/phytotaxa.302.1.5

    Article  Google Scholar 

  12. Chen, W.H., Man, L., Huang, Z.X., Yang, G.M., Han, Y.F., Liang, J.D., and Liang, Z.Q., Beauveria majiangensis, a new entomopathogenic fungus from Guizhou, China, Phytotaxa, 2018, vol. 333, pp. 243–250. https://doi.org/10.11646/phytotaxa.333.2.8

    Article  Google Scholar 

  13. de Hoog, G.S., The genera Beauveria, Isaria, Tritirachium and Acrodontium gen. nov., Stud. Mycol., 1972, vol. 1, pp. 1–41.

    Google Scholar 

  14. Doyle, J.J. and Doyle, J.L., A rapid DNA isolation procedure for small quantities of fresh leaf tissue, Phytochem. Bull., 1987, vol. 19, pp. 11–15.

    Google Scholar 

  15. Evlakhova, A.A., Entomopatogennye griby. Sistematika, biologiya, prakticheskoe znachenie (Entomopathogenic Fungi. Systematics, Biology, Practical Significance), Leningrad: Nauka, 1974.

  16. Glare, T.R., Reay, S.D., Nelson, T.L., and Moore, R., Beauveria caledonica is a naturally occurring pathogen of forest beetles, Mycol. Res., 2008, vol. 112, pp. 352–360. https://doi.org/10.1016/j.mycres.2007.10.015

    Article  CAS  PubMed  Google Scholar 

  17. Guindon, S., Dufayard, J.F., Lefort, V., Anisimova, M., Hordijk, W., and Gascuel, O., New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0, Syst. Biol., 2010, vol. 59, no. 3, pp. 307–321. https://doi.org/10.1093/sysbio/syq010

    Article  CAS  PubMed  Google Scholar 

  18. Index Fungorum. A nomenclatural database, 2018. http://www.indexfungorum.org. Accessed April 10, 2019.

  19. Kalyaanamoorthy, S., Minh, B.Q., Wong, T.K.F., von Haeseler, A., and Jermiin, L.S., ModelFinder: Fast model selection for accurate phylogenetic estimates, Nat. Methods, 2017, vol. 14, no. 6, pp. 587–589. https://doi.org/10.1038/nmeth.4285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Katoh, K., Kuma, K., Toh, H., and Miyata, T., MAFFT version 5: Improvement in accuracy of multiple sequence alignment, Nucleic Acids Res., 2005, vol. 33, no. 2, pp. 511–518. https://doi.org/10.1093/nar/gki198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Katoh, K., Rozewicki, J., and Yamada, K.D., MAFFT online service: Multiple sequence alignment, interactive sequence choice and visualization, Brief Bioinform., 2019, vol. 20, no. 4, pp. 1160–1166. https://doi.org/10.1093/bib/bbx108

    Article  CAS  PubMed  Google Scholar 

  22. Kepler, R.M., Luangsa-Ard, J.J., Hywel-Jones, N.L., et al., A phylogenetically-based nomenclature for Cordycipitaceae (Hypocreales), IMA Fungus, 2017, vol. 8, no. 2, pp. 335–353. https://doi.org/10.5598/imafungus.2017.08.02.08

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kimura, M., Estimation of evolutionary distances between homologous nucleotide sequences, Proc. Natl. Acad. Sci. USA., 1981, vol. 78, pp. 454–458. https://doi.org/10.1073/pnas.78.1.454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Koval, E.Z., Opredelitel’ entomofil’nykh gribov SSSR (Identification Guide of Entomophilous Fungi of the USSR), Kyiv: Naukova Dumka, 1974.

  25. Kumar, S., Stecher, G., Li, M., Knyaz, C., and Tamura, K., MEGA X: Molecular evolutionary genetics analysis across computing platforms, Molec. Biol. Evol., 2018, vol. 35, pp. 1547–1549. https://doi.org/10.1093/molbev/msy096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lednev, G., Tokarev, Y., Uspanov, A., Malysh, J., Duisembekov, B., Sabitova, M., Levchenko, M., Smagulova, S., Orazova, S., Amanov, S., and Sagitov, A., Molecular criteria for screening of Beauveria strains used for insect pest control, J. Biotechnology, 2014, vol. 185, pp. S63–S64. https://doi.org/10.1016/j.jbiotec.2014.07.215

    Article  Google Scholar 

  27. Lednev, G.R., Borisov, B.A., and Mitina, G.V., Vozbuditeli mikozov nasekomikh: Posobie po diagnostike (Causative Agents of Mycoses of Insects: A Manual for Diagnostics), St. Petersburg: Vseross. Nauchno-Issled. Inst. Zaschity Rastenii, 2003.

  28. Lednev, G.R., Uspanov, A.M., Levchenko, M.V., Sabitova, M.N., Kamenova, A.S., Abdukerim, R., Konurova, D.S., Duisembekov, B.A., and Kazartsev, I.A., Causative agents of bark beetle mycoses and prospects for their use in the xylophage population control, Vestn. Zashch. Rast., 2017, vol. 94, no. 4, pp. 22–28.

    Google Scholar 

  29. Lednev, G.R., Levchenko, M.V., and Kazartsev, I.A., Mycobiota associated with the European Spruce Bark Beetle (Ips typographus) in Leningrad oblast, Mikol. Fitopatol., 2019, vol. 53, no. 2, pp. 80–89. https://doi.org/10.1134/S0026364819020065

    Article  Google Scholar 

  30. Lefort, V., Longueville, J.E., and Gascuel, O., SMS: Smart Model Selection in PhyML, Mol. Biol. Evol., 2017, vol. 34, no. 9, pp. 2422–2424. https://doi.org/10.1093/molbev/msx149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. MacLeod, D.M., Investigations on the genera Beauveria Vuill. and Tritirachium Limber, Can. J. Bot., 1954, vol. 32, no. 6, pp. 818–890.

    Article  Google Scholar 

  32. Malferrari, G., Monferini, E., DeBlasio, P., Diaferia, G., Saltini, G., Del Vecchio, E., Rossi-Bernardi, L., and Biunno, I., High-quality genomic DNA from human whole blood and mononuclear cells, BioTechniques, 2002, vol. 33, no. 6, pp. 1228–1230. https://doi.org/10.2144/02336bm09

    Article  CAS  PubMed  Google Scholar 

  33. Mascarin, G.M., and Jaronski, S.T., The production and uses of Beauveria bassiana as a microbial insecticide, World J. Microbiol. Biotechnol., 2016, vol. 32, p. 177. https://doi.org/10.1007/s11274-016-2131-3

    Article  CAS  PubMed  Google Scholar 

  34. Medo, J., Michalko, J., Medová, J., and Cagáň, Ľ., Phylogenetic structure and habitat associations of Beauveria species isolated from soils in Slovakia, J. Invertebr. Pathol., 2016, vol. 140, pp. 46–50. https://doi.org/10.1016/j.jip.2016.08.009

    Article  PubMed  Google Scholar 

  35. Minh, B.Q., Nguyen, M.A., and von Haeseler, A., Ultrafast approximation for phylogenetic bootstrap, Mol. Biol. Evol., 2013, vol. 30, pp. 1188–1195. https://doi.org/10.1093/molbev/mst024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Molodkina, N.N., Entomopathogenic deuteromycetes of pine young growth of the middle taiga subzone of the European Northeast, Cand. Sci. (Biol.) Dissertation, Syktyvkar, 2003.

  37. Nguyen, L.T., Schmidt, H.A., von Haeseler, A., and Minh, B.Q., IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies, Mol. Biol. Evol., 2015, vol. 32, no. 1, pp. 268–274. https://doi.org/10.1093/molbev/msu300

    Article  CAS  PubMed  Google Scholar 

  38. Ogarkov, B.N., Native strains of entomopathogenic fungi and perspectives of their use in Eastern Siberia, Extended Abstract of Cand. Sci. (Biol.) Dissertation, Irkutsk, 1972.

  39. Pérez-González, V.H., Guzmán-Franco, A.W., Alatorre-Rosas, R., Hernández-López, J., Hernández-López, A., Carrillo-Benítez, M.G., and Baverstock, J., Specific diversity and habitat associations of Beauveria species isolated from soils in Mexico, J. Invertebr. Pathol., 2014, vol. 119, pp. 54–61. https://doi.org/10.1016/j.jip.2014.04.004

    Article  PubMed  Google Scholar 

  40. R Core Team, R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, 2019. https://www.R-project.org/.

  41. Rehner, S.A. and Buckley, E.A., Beauveria phylogeny inferred from nuclear ITS and EF1-α sequences: Evidence for cryptic diversification and links to Cordyceps teleomorphs, Mycologia, 2005, vol. 97, no. 1, pp. 84–98. https://doi.org/10.1080/15572536.2006.11832842

    Article  CAS  PubMed  Google Scholar 

  42. Rehner, S.A., Posada, F., Buckley, E.P., Infante, F., Castillo, A., and Vega, F.E., Phylogenetic origins of African and Neotropical Beauveria bassiana s.l. pathogens of the coffee berry borer, Hypothenemus hampei, J. Invertebr. Pathol., 2006, vol. 93, no. 1, pp. 11–21. https://doi.org/10.1016/j.jip.2006.04.005

    Article  PubMed  Google Scholar 

  43. Rehner, S.A., Minnis, A.M., Sung, G.H., Luangsa-Ard, J.J., Devotto, L., and Humber, R.A., Phylogeny and systematics of the anamorphic, entomopathogenic genus Beauveria, Mycologia, 2011, vol. 103, no. 5, pp. 1055–1073. https://doi.org/10.3852/10-302

    Article  PubMed  Google Scholar 

  44. Revell, L.J., Phytools: An R package for phylogenetic comparative biology (and other things), Methods Ecol. Evol., 2012, vol. 3, no. 2, pp. 217–223. https://doi.org/10.1111/j.2041-210X.2011.00169.x

    Article  Google Scholar 

  45. Robène-Soustrade, I., Jouen, E., Pastou, D., Payet-Hoarau, M., Goble, T., Linderme, D., Lefeuvre, P., Calmès, C., Reynaud, B., Nibouche, S., and Costet, L., Description and phylogenetic placement of Beauveria hoplocheli sp. nov. used in the biological control of the sugarcane white grub, Hoplochelus marginalis, on Reunion Island, Mycologia, 2015, vol. 107, no. 6, pp. 1221–1232. https://doi.org/10.3852/14-344

    Article  CAS  PubMed  Google Scholar 

  46. Sanger, F., Nicklen, S., and Coulson, A.R., DNA sequencing with chain-terminating inhibitors, Proc. Natl. Acad. Sci. USA., 1977, vol. 74, no. 12, pp. 5463–5467. https://doi.org/10.1073/pnas.74.12.5463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sanjuan, T., Tabima, J., Restrepo, S., Læssøe, T., Spatafora, J.W., Franco-Molano, A.E., Entomopathogens of Amazonian stick insects and locusts are members of the Beauveria species complex (Cordyceps sensu stricto), Mycologia, 2014, vol. 106, no. 2, pp. 260–275. https://doi.org/10.3852/106.2.260

    Article  PubMed  Google Scholar 

  48. Sevim, A., Demir, I., Höfte, M., Humber, R.A., and Demirbag, Z., Isolation and characterization of entomopathogenic fungi from hazelnut-growing region of Turkey, Biocontrol, 2010, vol. 55, no. 2, pp. 279–297. https://doi.org/10.1007/s10526-009-9235-8

    Article  Google Scholar 

  49. Sokornova, S.V., Borisov, B.A., Lednev, G.R., Tokarev, Yu.S., Kazartsev, I.A., and Volkova, N.S., The first detection of entomopathogenic fungus Beauveria caledonica in Russia, in Sovremennaya mikologiya v Rossii: Mat. 4-go Sezda mikologov Rossii (Modern Mycology in Russia, Proc. IV Congress of Russian Mycologists), Moscow, 2017, pp. 404–405.

  50. Steinhaus, E.A., Principles of Insect Pathology, New York: McGraw-Hill Book Co., 1949.

    Google Scholar 

  51. Tamura, K. and Nei, M., Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees, Mol. Biol. Evol., 1993, vol. 10, pp. 512–526. https://doi.org/10.1093/oxfordjournals.molbev.a040023

    Article  CAS  PubMed  Google Scholar 

  52. Vaidya, G., Lohman, D.J., and Meier, R., SequenceMatrix: Concatenation software for the fast assembly of multi-gene datasets with character set and codon information, Cladistics, 2011, vol. 27, no. 2, pp. 171–180. https://doi.org/10.1111/j.1096-0031.2010.00329.x

    Article  PubMed  Google Scholar 

  53. Vega, F.E., The use of fungal entomopathogens as endophytes in biological control: A review, Mycologia, 2018, vol. 110, pp. 4–30. https://doi.org/10.1080/00275514.2017.1418578

    Article  PubMed  Google Scholar 

  54. Vuillemin, P., Beauveria, nouveau genre de Verticilliacées, Bull. Soc. Bot. Fr., 1912, vol. 59, pp. 34–40.

    Article  Google Scholar 

  55. Yarrow, P.J., On the mark disease, calcinaccio or muscardine, a disease that affects silkworms, in Phytopathological Classics 10, Ainsworth, G.C. and Yarrow, P.J., Eds., Baltimore: APS, 1958, pp. 1–49.

    Google Scholar 

  56. Zhang, S.L., He, L.M., Chen, X., and Huang, B., Beauveria lii sp. nov. isolated from Henosepilachna vigintioctopunctata, Mycotaxon, 2012, vol. 121, pp. 199–206. https://doi.org/10.5248/121.199

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank S.M. Malysh, M.N. Sabitova, and S.G. Udalov, researchers of the All-Russian Institute of Plant Protection, for their assistance in the study, as well as the reviewers for thorough analysis of the manuscript and valuable comments.

Funding

The study was supported by the Russian Foundation for Basic Research, project no. 17-04-00474 “Biodiversity and Functional Role of Mycobiota Associated with European Spruce Bark Beetle in the Boreal Forests of Northwest Russia,” as well as by the state task of the All-Russian Institute of Plant Protection.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. A. Kazartsev, G. R. Lednev or M. V. Levchenko.

Ethics declarations

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

Additional information

Translated by E. Makeeva

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazartsev, I.A., Lednev, G.R. & Levchenko, M.V. Species and Intraspecies Level Diversity of Beauveria in Boreal Forests of Northwestern Russia. Biol Bull Rev 13 (Suppl 1), S39–S49 (2023). https://doi.org/10.1134/S207908642307006X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S207908642307006X

Keywords:

Navigation