Log in

Low-Temperature Synthesis of Barium Titanate in a Mesoporous Polyethylene Matrix

  • NEW TECHNOLOGIES FOR OBTAINING AND PROCESSING MATERIALS
  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

A nanocomposite based on high-density polyethylene with 13–15 wt % of barium titanate was obtained by the low-temperature synthesis of the inorganic component directly in the mesopores of an oriented polymer matrix using the sol-gel method followed by hydrothermal treatment in an alkaline medium. Crystallization of barium titanate in nanopores was detected by X-ray powder diffraction and electron microscopy to occur mainly in a cubic crystalline modification with an average crystallite size of 16 nm, where crystallites form chain structures. The dielectric properties of the polymer nanocomposite and barium titanate synthesized under similar conditions were comparatively assessed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Acosta, M., Novak, N., Rojas, V., Patel, S., Vaish, R., Koruza, J., Rossetti, G.A., and Rödel, J., BaTiO3-based piezoelectrics: Fundamentals, current status, and perspectives, Appl. Phys. Rev., 2017, vol. 4, no. 4, art. ID 041305.

  2. Jiang, B., Iocozzia, J., Zhao, L., Zhang, H., Harn, Y.-W., Chen, Y., and Lin, Z., Barium titanate at the nanoscale: Controlled synthesis and dielectric and ferroelectric properties, Chem. Soc. Rev., 2019, vol. 48, no. 4, pp. 1194–1228.

    Article  CAS  Google Scholar 

  3. Su, J. and Zhang, J., Recent development on modification of synthesized barium titanate (BaTiO3) and polymer/BaTiO3 dielectric composites, J. Mater. Sci.: Mater. Electron., 2019, vol. 30, no. 3, pp. 1957–1975.

    CAS  Google Scholar 

  4. Gao, F., Zhang, K., Guo, Y., Xu, J., and Szafran, M., (Ba, Sr)TiO3/polymer dielectric composites–progress and perspective, Prog. Mater. Sci., 2021, vol. 121, art. ID 100813.

  5. Manoli, K., Oikonomou, P., Valamontes, E., Raptis, I., and Sanopoulou, M., Polymer-BaTiO3 composites: Dielectric constant and vapor sensing properties in chemocapacitor applications, J. Appl. Polym. Sci., 2012, vol. 125, no. 4, pp. 2577–2584.

    Article  CAS  Google Scholar 

  6. Su, J. and Zhang, J., Preparation and properties of Barium titanate (BaTiO3) reinforced high density polyethylene (HDPE) composites for electronic application, J. Mater. Sci.: Mater. Electron., 2016, vol. 27, no. 5, pp. 4344–4350.

    CAS  Google Scholar 

  7. Tchmyreva, V.V., Ponomarenko, A.T., and Shevchenko, V.G., Electrophysical properties of polymer based composites with Barium titanate (BaTiO3), Ferroelectrics, 2004, vol. 307, no. 1, pp. 233–242.

    Article  CAS  Google Scholar 

  8. Guo, N., DiBenedetto, S.A., Kwon, D.-K., Wang, L., Russell, M.T., Lanagan, M.T., Facchetti, A., and Marks, T.J., Supported metallocene catalysis for in situ synthesis of high energy density metal oxide nanocomposites, J. Am. Chem. Soc., 2007, vol. 129, no. 4, pp. 766–767.

    Article  CAS  Google Scholar 

  9. Yang, K., Huang, X., **e, L., Wu, C., Jiang, P., and Tanaka, T., Core–shell structured polystyrene/BaTiO3 hybrid nanodielectrics prepared by in situ RAFT polymerization: A route to high dielectric constant and low loss materials with weak frequency dependence, Macromol. Rapid Commun., 2012, vol. 33, no. 22, pp. 1921–1926.

    Article  CAS  Google Scholar 

  10. Volynskii, A.L. and Bakeev, N.F., Surface Phenomena in the Structural and Mechanical behaviour of Solid Polymers, Boca Raton: CRC Press, 2016.

    Book  Google Scholar 

  11. Volynskii, A.L., Trofimchuk, E.S., Nikonorova, N.I., and Bakeev, N.F., Nanocomposites on the basis of crazed polymers, Russ. J. Gen. Chem., 2002, vol. 72, no. 4, pp. 536–550.

    Article  CAS  Google Scholar 

  12. Vertoprakhov, V.N., Nikulina, L.D., and Igume-nov, I.K., Oxide ferroelectric thin films: synthesis From organometallic compounds and properties, Russ. Chem. Rev., 2005, vol. 74, no. 8, pp. 725–746.

    Article  CAS  Google Scholar 

  13. Wang, L., Liu, L., Xue, D., Kang, H., and Liu, C., Wet routes of high purity BaTiO3 nanopowders, J. Alloys Compd., 2007, vol. 440, nos. 1–2, pp. 78–83.

  14. Chen, K.-Y. and Chen, Y.-W., Preparation of barium titanate ultrafine particles from rutile titania by a hydrothermal conversion, Powder Technol., 2004, vol. 141, nos. 1–2, pp. 69–74.

  15. Sun, W. and Li, J., Microwave-hydrothermal synthesis of tetragonal barium titanate, Mater. Lett., 2006, vol. 60, nos. 13–14, pp. 1599–1602.

  16. Wang, W., Cao, L., Liu, W., Su, G., and Zhang, W., Low-temperature synthesis of BaTiO3 powders by the sol–gel-hydrothermal method, Ceram. Int., 2013, vol. 39, no. 6, pp. 7127–7134.

    Article  CAS  Google Scholar 

  17. Swanson, H.E., McMurdie, H.F., Morris, M.C., and Evans, E.H., Standard X-Ray Diffraction Powder Patterns: Section 7, National Bureau of Standards, USA, 1969.

  18. Cao, G. and Wang, Y., Nanostructures and Nanomaterials: Synthesis, Properties, and Applications, Singapore: World Sci., 2010.

    Google Scholar 

  19. Buscaglia, V. and Randall, C.A., Size and scaling effects in barium titanate. An overview, J. Eur. Ceram. Soc., 2020, vol. 40, no. 11, pp. 3744–3758.

    Article  CAS  Google Scholar 

  20. Tchmyreva, V.V., Ponomarenko, A.T., and Shevchenko, V.G., Structure and dielectric properties of polymeric composites with ferroelectric fillers, e-Polymers, 2003, vol. 3, no. 1, art. ID 036.

  21. Seghier, T. and Benabed, F., Dielectric proprieties determination of High Density Polyethylene (HDPE) by dielectric spectroscopy, Int. J. Mater., Mech. Manuf., 2015, vol. 3, no. 2, pp. 121–124.

    CAS  Google Scholar 

Download references

ACKNOWLEDMENTS

We are grateful to A.O. Roenko for her help in atomic force microscopy measurements.

Funding

The work is performed as a part of the Project “Modern Problems of Chemistry and Physical Chemistry of High Molecular Compounds” (State Assignment no. АААА А21-121011990022-4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. Trofimchuk.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by K. Utegenov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trofimchuk, E.S., Moskvina, M.A., Shevchenko, V.G. et al. Low-Temperature Synthesis of Barium Titanate in a Mesoporous Polyethylene Matrix. Inorg. Mater. Appl. Res. 13, 1391–1397 (2022). https://doi.org/10.1134/S2075113322050422

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113322050422

Keywords:

Navigation