Log in

Vacuum-Arc Synthesis of Metal-Organic Framework Structures Based on ZrO2

  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

Vacuum-arc synthesis of nanopowders based on zirconia and metal-organic framework structures was carried out using low-pressure arc discharge plasma. The obtained material was studied using a number of techniques (XRD, IR, TEM, DTA). The TEM technique showed that Zr-MOF represents strongly agglomerated particles of nearly spherical shape. The image clearly shows the crystal ordering of the nanoparticles with a large (up to 2 nm) lattice constant. The sizes of particles vary in the range from 5 to 30 nm. The mean particle size is 9.4 nm. XRD showed that the fraction of ZrO relative to Zr-MOF calculated according to the most intense lines of the X-ray diffraction pattern is 65%. Results of XRD agree well with IR studies. The DTA curve shows a continuous exothermic process, which is associated with a number of features of plasma chemical synthesis and morphology of the obtained nanoparticles, which is in full accordance with the study using transmission electron microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Bai, Y., Dou, Y., **e, L.-H., Rutledge, W., Li, J.-R., and Zhou, H.-C., Zr-based metal—organic frameworks: Design, synthesis, structure, and applications, Chem. Soc. Rev., 2016, vol. 45, pp. 2327–2367.

    Article  CAS  Google Scholar 

  2. Cavka, J.H., Jakobsen, S., Olsbye, U., Guillou, N., Lamberti, C., Bordiga, S., and Lillerud, K.P., A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability, J. Am. Chem. Soc., 2008, vol. 130, pp. 13850–13851.

    Article  Google Scholar 

  3. Wang, T.C., Bury, W., Gomez-Gualdron, D.A., Vermeulen, N.A., Mondloch, J.E., Deria, P., Zhang, K., Moghadam, P.Z., Sarjeant, A.A., Snurr, R.Q., Stoddart, J.F., Hupp, J.T., and Farha, O.K., Ultrahigh surface area zirconium MOFs and insights into the applicability of the bet theory, J. Am. Chem. Soc., 2015, vol. 137, pp. 3585–3591.

    Article  CAS  Google Scholar 

  4. Furukawa, H., Gandara, F., Zhang, Y.-B., Jiang, J., Queen, W.L., Hudson, M.R., and Yaghi, O.M., Water adsorption in porous metal–organic frameworks and related materials, J. Am. Chem. Soc., 2014, vol. 136, pp. 4369–4381.

    Article  CAS  Google Scholar 

  5. Gong, W., Chen, X., Jiang, H., Chu, D.D., Cui, Y., and Liu, Y., Highly stable Zr(IV)—based metal–organic frameworks with chiral phosphoric acids for catalytic asymmetric tandem reactions, J. Am. Chem. Soc., 2019, vol. 141, no. 18, pp. 7498–7508.

    Article  CAS  Google Scholar 

  6. Zhu, J., Usov, P.M., Xu, W., Celis-Salazar, P.J., Lin, S., Kessinger, M.C., Landaverde-Alvarado, C., Cai, M., May, A.M., Slebodnick, C., Zhu, D., Senanayake, S.D., and Morris, A.J., A new class of metal-cyclam-based zirconium metal–organic frameworks for CO2 adsorption and chemical fixation, J. Am. Chem. Soc., 2018, vol. 140, pp. 993–1003.

    Article  CAS  Google Scholar 

  7. He, Y., Tang, Y.P., Ma, D., and Chun, T.-S., UiO-66 incorporated thin-film nanocomposite membranes for efficient selenium and arsenic removal, J. Membr. Sci., 2017, vol. 541, pp. 262–270.

    Article  CAS  Google Scholar 

  8. Lazaro, I.A. and Forgan, R.S., Application of zirconium MOFs in drug delivery and biomedicine, Coord. Chem. Rev., 2019, vol. 380, pp. 230–259.

    Article  Google Scholar 

  9. Chen, D., Yang, D., Dougherty, C.A., Lu, W., Wu, H., He, X., Cai, T., Van Dort, M.E., Ross, B.D., and Hong, H., In vivo targeting and positron emission tomography imaging of tumor with intrinsically radioactive metal–organic frameworks nanomaterials, ACS Nano, 2017, vol. 11, pp. 4315–4327.

    Article  CAS  Google Scholar 

  10. Goswami, S., Ray, D., Otake, K.-I., Kung, C.-W., Garibay, S.J., Islamoglu, T., Atilgan, A., Cui, Y., Cramer, C.J., Farha, O.K., and Hupp, J.T., A porous, electrically conductive hexa-zirconium (IV) metal–organic framework, Chem. Sci., 2018, vol. 9, pp. 4477–4482.

    Article  CAS  Google Scholar 

  11. Burtch, N.C., Jasuja, H., and Walton, K.S., Water stability and adsorption in metal–organic frameworks, Chem. Rev., 2014, vol. 114, pp. 10575–10612.

    Article  CAS  Google Scholar 

  12. Ushakov, A.V., Karpov, I.V., Fedorov, L.Yu., Dorozhkina, E.A., Karpova, O.N., Shaikhadinov, A.A., Demin, V.G., Demchenko, A.I., Brungardt, M.V., and Goncharova, E.A., Formation of CuO and Cu2O crystalline phases in a reactor for low-pressure arc discharge synthesis, Inorg. Mater.: Appl. Res., 2020, vol. 11, pp. 232–237. https://doi.org/10.1134/S2075113320010372

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, the Government of the Krasnoyarsk Krai, the Regional Foundation of Science, and OOO Seismiklab (project no. 20-48-242904).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Karpov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Muravev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karpov, I.V., Ushakov, A.V., Fedorov, L.Y. et al. Vacuum-Arc Synthesis of Metal-Organic Framework Structures Based on ZrO2. Inorg. Mater. Appl. Res. 13, 924–928 (2022). https://doi.org/10.1134/S2075113322040165

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113322040165

Keywords:

Navigation