Log in

Proton-Conducting Ceramics Based on Barium Hafnate and Cerate Doped with Zirconium, Yttrium, and Ytterbium Oxides for Fuel Cell Electrolytes

  • GENERAL-PURPOSE MATERIALS
  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

Nanopowders of the compositions BaHf1 – xYbxO3 – δ (x = 0.04, 0.08, 0.10) and BaCe0.9 – xZrxY0.1O3 – δ (x = 0, 0.5, 0.6, 0.7, 0.8) were synthesized by the combined crystallization of nitric acid salts and the citrate-nitrate method. Those nanopowders were used to produce ceramic materials with a cubic crystal structure of the perovskite type, with a grain size of ~20–70 nm. The study of electrophysical properties revealed that they have a proton type of conductivity in the temperature range of 500–700°C; σ = 10–2–10–5 S/cm. The type and mechanism of electrical conductivity of ceramics of the composition BaHf1 – xYbxO3 – δ (x = 0.04, 0.08, 0.10) were studied both experimentally and using theoretical calculations by computer modeling using the electron density functional method; the results are in good agreement. The research shows the prospects of using the obtained ceramic materials as proton-conducting electrolytes for solid oxide fuel cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Ivanov-Shits, A.K. and Murin, I.V., Ionika tverdogo tela (Solid State Ionics), St. Petersburg: St. Petersburg Univ., 2010, vol. 2.

  2. Animitsa, I.E., Protonnyi transport v slozhnykh oksidakh: Uchebnoe posobie (Proton Transport in Complex Oxides: Handbook), Ekaterinburg: Ural Univ., 2014.

  3. Lyagaeva, Yu.G., Medvedev, D.A., Demin, A.K., et al., Specific features of preparation of dense ceramic based on barium zirconate, Semiconductors, 2014, vol. 48, no. 10, pp. 1353–1358. https://doi.org/10.1134/S1063782614100182

    Article  CAS  Google Scholar 

  4. Pal’guev, S.F., Vysokotemperaturnye protonnye tverdye elektrolity (High-Temperature Proton Solid Electrolytes), Ekaterinburg: Ural Branch Russ. Acad. Sci., 1998.

  5. Atta, N.F., Perovskite nanomaterials – synthesis, characterisation, and applications, in Perovskite Materials. Synthesis, Characterisation, Properties and Applications, Pan, L. and Zhu, G., IntechOpen, 2016, chap. 4, pp. 107–151. https://doi.org/10.5772/60469

  6. Draber, F.M., Ader, C., Arnold, J.P., Eisele, S., Grieshammer, S., Yamaguchi, S., and Martin, M., Nanoscale percolation in doped BaZrO3 for high proton mobility, Nat. Mater., 2020, vol. 19, no. 3, pp. 338–346.

    Article  CAS  Google Scholar 

  7. Gomez, M.A., Chunduru, M., Chigweshe, L., Foster, L., Fensin, S.J., Fletcher, K.M., and Fernandez, L.E., The effect of yttrium dopant on the proton conduction pathways of BaZrO3, a cubic perovskite, J. Chem Phys., 2010, vol. 132, no. 21, art. ID 214709.

    Article  Google Scholar 

  8. Lyagaeva, Ju.G. and Medvedev, D.A., Structure and transport properties of composite materials on a basis of Ce0.8Nd0.2O2 – δ and BaCe0.8Nd0.2O3 – δ, Chim. Tech. Acta, 2015, vol. 2, pp. 28–41.

    Article  Google Scholar 

  9. Medvedev, D., BaCeO3: Materials development, properties and application, Prog. Mater. Sci., 2014, vol. 60, pp. 72–129.

    Article  CAS  Google Scholar 

  10. Gorelov, V.P., High-temperature proton conductivity in oxide materials, in Ionnyi i elektronnyi perenos v tverdotel’nykh sistemakh (Ion and Electron Transfer in Solid-State Systems), Sverdlovsk: Ural Branch Acad. Sci. USSR, 1992, pp. 36–42.

  11. Yamaguchi, S. and Yamada, N., Thermal lattice expansion behavior of Yb-doped BaCeO3, Solid State Ionics, 2003, vol. 162, pp. 23–29.

    Article  Google Scholar 

  12. Paschoal, J.O.A., Kleykamp, H., and Thuemmler, F., Phase equilibria in the pseudoquaternary BaO–UO2–ZrO2–MoO2 system, J. Nucl. Mater., 1987, vol. 151, pp. 10–21.

    Article  CAS  Google Scholar 

  13. Lim, H., Jang, S., and Lee, Y.S., Do**-site dependence of upconversion emission of Ho3+ ion in BaHfO3, J. Korean Phys. Soc., 2020, vol. 76, no. 2, pp. 155–161.

    Article  CAS  Google Scholar 

  14. Kim, Y.M., Park, C., Ha, T., Kim, U., Kim, N., Shin, J., Kim, Y., Yu, J., Kim, J.H., and Char, K., High-k perovskite gate oxide BaHfO3, APL Mater., 2017, vol. 5, no. 1, art. ID 016104.

    Article  Google Scholar 

  15. Sawant, P., Varma, S., Wani, B.N., and Bharadwaj, S.R., Synthesis, stability and conductivity of BaCe0.8 – xZrxY0.2O3 – δ as electrolyte for proton conducting SOFC, Int. J. Hydrogen Energy, 2012, vol. 37, pp. 3848–3856.

    Article  CAS  Google Scholar 

  16. Pagnier, T., Charrier-Cougoulic, I., Ritter, C., and Lucazeau, G., A neutron diffraction study of BaCexZr1 – xO3, Eur. Phys. J. Appl. Phys., 2000, vol. 9, pp. 1–9.

    Article  CAS  Google Scholar 

  17. Duran, P., Villegas, M., Capel, F., Recio, P., and Moure, C., Low temperature sintering and microstructural development of nano scale Y-TZP ceramics, J. Eur. Ceram. Soc., 1996, vol. 16, no. 9, pp. 945–952.

    Article  CAS  Google Scholar 

  18. GOST (State Standard) 473.4-81: Chemically Resistant and Heat Resistant Ceramic Wears. The Method for Determination of Apparent Density and Apparent Sponginess, 1981.

  19. Arsent’ev, M.Yu., Tikhonov, P.A., Kalinina, M.V., Tsvetkova, I.N., and Shilova, O.A., Synthesis and physicochemical properties of electrode and electrolyte nanocomposites for supercapacitors, Fiz. Khim. Stekla, 2012, vol. 38, no. 5, pp. 653–664.

    Google Scholar 

  20. Callow, R.C.A., Computer Modelling in Inorganic Crystallography, London: Academic, 1997.

    Google Scholar 

  21. Bernholc, J., Computational materials science: The era of applied quantum mechanics, Phys. Today, 1999, vol. 52, no. 9, pp. 30–35.

    Article  CAS  Google Scholar 

  22. Simonenko, T.L., Kalinina, M.V., Simonenko, N.P., et al., Synthesis of BaCe0.9 – xZrxY0.1O3 – δ nanopowders and the study of proton conductors fabricated on their basis by low-temperature spark plasma sintering, Int. J. Hydrogen Energy, 2019, vol. 44, pp. 20345–20354.

    Article  CAS  Google Scholar 

  23. Simonenko, T.L., Kalinina, M.V., Simonenko, N.P., et al., Spark plasma sintering of nanopowders in the CeO2–Y2O3 system as a promising approach to the creation of nanocrystalline intermediate-temperature solid electrolytes, Ceram. Int., 2018, vol. 44, no. 16, pp. 19879–19884.

    Article  CAS  Google Scholar 

  24. Kreuer, K.D., Proton-conducting oxides, Annu. Rev. Mater. Res., 2003, vol. 33, no. 1, pp. 333–359.

    Article  CAS  Google Scholar 

  25. Tikhonov, P.A., Kalinina, M.V., Arsent’ev, M.Yu., and Pugachev, K.E., Proton-conducting ceramics and thin films based on La and Sm zircons, Fiz. Khim. Stekla, 2012, vol. 38, no. 4, pp. 553–564.

    Google Scholar 

  26. Sale, M. and Avdeev, M., 3DBVSMAPPER: A program for automatically generating bond-valence sum landscapes, J. Appl. Crystallogr., 2012, vol. 45, no. 5, pp. 1054–1056.

    Article  CAS  Google Scholar 

Download references

Funding

This work was carried out within the framework of the State Assignment of the Institute of Silicate Chemistry of the Russian Academy of Sciences (topic no. AAAA-A19-119022290091-8).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. V. Kalinina, T. L. Simonenko, M. Yu. Arsentiev, N. Yu. Fedorenko, P. A. Tikhonov or O. A. Shilova.

Additional information

Translated by N. Saetova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalinina, M.V., Simonenko, T.L., Arsentiev, M.Y. et al. Proton-Conducting Ceramics Based on Barium Hafnate and Cerate Doped with Zirconium, Yttrium, and Ytterbium Oxides for Fuel Cell Electrolytes. Inorg. Mater. Appl. Res. 12, 1265–1270 (2021). https://doi.org/10.1134/S2075113321050154

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113321050154

Keywords:

Navigation