Log in

Features of structure and properties of biopolymer composites with inorganic nanoparticles

  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

The morphology, atomic structure, and strength characteristics of composites of barium titanate and silicon dioxide nanoparticles with biopolymers (collagen, lignin, starch) were investigated. Both changes in the inner structures and oriented ordering of morphology were found in the composites of barium titanate with collagen. Formations of quasi-parallel rows from silicon dioxide nanoparticles were found in the collagen composites with silicon dioxide. Thermal resistance of the collagen increased significantly in the process. Formation of a three-dimensional periodic structure from spherical nanoparticles was found in the composites of silicon dioxide with lignin. Interaction mechanisms of nanoparticles and biopolymers causing formation of the observed structures are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berlin, A.A., Vol’fson, S.A., Oshmyan, V.G., and Enikolopyan, N.S., Printsipy sozdaniya kompozitsionnykh materialov (Principles of Composite Material Production), Moscow: Khimiya, 1990.

    Google Scholar 

  2. Shevchenko, V.G., Sokolov, V.I., and Simonov-Emel’yanov, I.D., Fizika kompozitsionnykh materialov (Physics of Composite Materials), Moscow: Mir, 2005, vol. 1.

    Google Scholar 

  3. Pomogailo, A.D., Rozenberg, A.S., and Uflyand, I.E., Nanochastitsy metallov v polimerakh (Nanoparticles of Metals in Polymers), Moscow: Khimiya, 2000.

    Google Scholar 

  4. Kostylev, V.A. and Narkevich, B.Ya., Meditsinskaya fizika (Medical Physics), Moscow: Meditsina, 2008.

    Google Scholar 

  5. Klassen, N.V., et al., Nanoscintillators for novel methods of medical diagnostics and therapy, Biotekhnosfera, 2009, No. 3, pp. 1–11.

    Google Scholar 

  6. Brabec, C.J., Serdar Saricifici, N., and Hummelen, J.C., Plastic solar cells, Adv. Funct. Mater., 2001, vol. 1, pp. 15–26.

    Article  Google Scholar 

  7. Godovsky, D.Yu., Electron behavior and magnetic properties of polymer-nanocomposites, Adv. Polym. Sci., 1995, vol. 119, pp. 79–122.

    Article  Google Scholar 

  8. Klassen, N.V., Kedrov, V.V., Ossipyan, Y.A., Shmurak, S.Z., Shmytn-ko, I.M., Krivko, O.A., Kudrenko, E.A., Kurlov, V.N., Kobelev, N.P., Kiselev, A.P., and Bozhko, S.I., Nanoscintillators for microscopic diagnostics of biological and medical objects and medical therapy, IEEE Transactions on Nanobioscience, 2009, vol. 8, pp. 20–32.

    Article  Google Scholar 

  9. Shmurak, S.Z., Kedrov, V.V., Klassen, N.V., and Shakhrai, O.A., Spectroscopy of composite scintillators, Phys. Solid State, 2012, vol. 54, pp. 2266–2276.

    Article  CAS  Google Scholar 

  10. Shmurak, S.Z., Kedrov, V.V., Klassen, N.V., and Shakhrai, O.A., Pulsed X-ray luminescence of composites consisting of inorganic particles and organic phosphors, Tech. Phys. Lett., 2012, vol. 38, pp. 691–694.

    Article  CAS  Google Scholar 

  11. Grinev, B.V. and Senchishin, V.G., Plastmassovye stsintillyatory (Plastic Scintillators), Kharkov: Akta, 2008.

    Google Scholar 

  12. Masalov, V.M., Sukhinina, N.S., and Emel’chenko, G.A., Colloidal particles of silicon dioxide for the formation of opal-like structures, Phys. Solid State, 2011, vol. 53, pp. 1135–1139.

    Article  CAS  Google Scholar 

  13. Koolman, J. and Rohm, K.-G., Taschenatlas der Biochemie, Stuttgart: Georg Thieme Verlag, 1998.

    Google Scholar 

  14. Lynch, I. and Dawson, K., Protein - nanoparticle interactions, Nanotoday, 2008, vol. 3, pp. 40–47.

    Article  CAS  Google Scholar 

  15. Zheludev, I.S., Elektricheskie kristally (Electrical Crystals), Moscow: Nauka, 1969.

    Google Scholar 

  16. Shorygina, N.N., Contemporary state of lignin chemistry, Khim. Drev., 1968, vol. 1, pp. 7–30.

    CAS  Google Scholar 

  17. Dyatlova, N.M., Temkina, V.Ya., and Popov, K.I., Kompleksony i kompleksonaty metallov (Chelates and Complexonates of Metals), Moscow: Khimiya, 1988.

    Google Scholar 

  18. Prigozhin, I.R. and Kondepugi, D., Sovremennaya termodinamika (Contemporary Thermodynamics), Moscow: Mir, 2002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Klassen.

Additional information

Original Russian Text © A.V. Ryzhenkov, N.V. Klassen, V.M. Masalov, 2013, published in Materialovedenie, 2013, No. 12, pp. 7–12.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryzhenkov, A.V., Klassen, N.V. & Masalov, V.M. Features of structure and properties of biopolymer composites with inorganic nanoparticles. Inorg. Mater. Appl. Res. 5, 312–317 (2014). https://doi.org/10.1134/S2075113314040327

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113314040327

Keywords

Navigation