Log in

Methods for Robust Filtering Based on Numerical Characteristics of Input Processes in Solving Problems of Navigation Information Processing and Motion Control

  • Published:
Gyroscopy and Navigation Aims and scope Submit manuscript

Abstract

A problem of robust linear filtering of random processes is considered under given constrains on the variance of the process itself and (or) the variances of derivatives, while the form of the power spectral density (PSD) of the process is assumed to be unknown. It is shown that a number of problems of navigation information processing and motion control can be reduced to the above formulation. Informativity of variances of derivatives and the effectiveness of the solutions obtained are analyzed when the variances are used to describe the properties of input processes (IP). A method for obtaining data on IP variances based on the analysis of the numerical characteristics of critical points is considered. Examples of solutions of applied problems are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Aerospace Navigation Systems, Nebylov, A. and Watson, J. (eds.), Wiley & Sons, UK, 2016.

  2. Stepanov, O.A., Loparev, A.V., and Chelpanov, I.B., Time-and-frequency approach to navigation information processing, Automation and Remote Control, 2014, vol. 75, no. 6, pp. 1091–1108.

    Article  MathSciNet  MATH  Google Scholar 

  3. Dunik, J., Biswas, S.K., Dempster, A.G., Pany, T., and Closas, P., State Estimation Methods in Navigation: Overview and Application, IEEE A&E Systems Magazine, vol. 12, 2020, no. 35, pp. 16–31.

  4. Stepanov, O.A., Osnovy teorii otsenivaniya s prilozheniyami k zadacham obrabotki navigatsionnoi informatsii. Part 1. Vvedenie v teoriyu otsenivaniya (Fundamentals of the Estimation Theory with Applications to the Problems of Navigation Information Processing. Part 1. Introduction to the Estimation Theory), St. Petersburg: Concern CSRI Elektropribor, 2017.

  5. Loparev, A.V., Stepanov, O.A., and Kulakova V.I., Robust filtering using the method of local approximations of power spectral densities, https://springer.longhoe.net/journal/13140 Gyroscopy and Navigation, 2014, no. 5, pp. 40–43.

  6. Nebylov, A.V., Zheludev, A.M., and Kalinichen-ko, V.N., Combinations of Kalman and robust filtering for navigation data processing, 3rd International Conference on Integrated Navigation Systems, St. Petersburg: Elektropribor, 1996, pp. 83–89.

  7. Bendat, J.S. and Piersol, A.G., Prikladnoi analiz sluchainykh dannykh (Applied Analysis of Random Data), Translated from English into Russian, Moscow: Mir, 1989.

  8. Ageev, A.M., Belyaev, V.V., Bondarev, V.G., and Protsenko, V.V., Automatic landing systems for unmanned aerial vehicles: problems and solutions, Voennaya mysl', 2020, no. 4, pp. 130–136.

  9. Livshits, N.A. and Pugachev, V.N., Veroyatnostnyi analiz sistem avtomaticheskogo upravleniya, Tom 1: Veroyatnostnye i statisticheskie kharakteristiki vozdeistvii i protsessov (Probabilistic Analysis of Automatic Control Systems. Vol. 1: Probabilistic and Statistical Characteristics of Effects and Processes), Moscow: Sovetskoe radio, 1963.

  10. Besekerskii, V.A. and Nebylov, A.V., Robastnye sistemy avtomaticheskogo upravleniya (Robust Automatic Control Systems), Moscow: Nauka, 1983.

  11. Loparev, A.V., Stepanov, O.A., and Chelpanov, I.B., Using frequency approach to time-variant filtering for processing of navigation information, Gyroscopy and Navigation, 2012, no. 3, pp. 9–19.

  12. Levin, B.R., Teoreticheskie osnovy statisticheskoi radiotekhniki (Theoretical Foundations of Statistical Radio Engineering), Moscow: Radio i svyaz’, 1989.

  13. Vasil’ev, K.K., Teoriya avtomaticheskogo upravleniya (sledyashchiye sistemy) (Theory of Automatic Control (Tracking Systems): Textbook. 2nd ed., Ul’yanovsk: Ul’yan. gos. tekhn. universitet, 2001.

  14. Tikhonov, V.I. and Khimenko V.I., Vybrosy traektoriy sluchainykh protsessov (Spikes of Trajectories of Random Processes), Moscow: Nauka, 2012.

  15. Kulakova, V.I., Nebylov, A.V., and Stepanov, O.A., Using the H 2/H approach to aviation gravimetry problems, 2010, Gyroscopy and Navigation, vol. 1, no. 2, pp. 141–145.

    Article  Google Scholar 

  16. Arkhipov, A.S. and Semenikhin, K.V., Minimax linear estimation with the probability criterion under unimodal noise and bounded parameters, Automation and Remote Control, vol. 81, no. 7, 2020, pp. 1176–1191.

    Article  MathSciNet  MATH  Google Scholar 

  17. Omorov, R.O., Quantitative Measures of Dynamical System Coarseness and Their Applications to Control Systems, Doct. Tech. Sci. Dissertation, St. Petersburg, 1992.

  18. Akhiezer, N.I., Klassicheskaya problema momentov i nekotorye voprosy analiza, svyazannye s neyu (The classical problem of moments and some issues of analysis related to it), Moscow: Fizmatlit, 1961.

    Google Scholar 

  19. Ulanov, G.M. and Senyavin, M.M., Optimization Theory and Deviation Accumulation Problem, Doklady AN SSSR, 1983, vol. 269, no. 4, pp. 818–821.

    Google Scholar 

  20. Kulakova, V.I., Guaranteed Estimation of Signals with Bounded Variances of Derivatives: Studies in Time and Frequency Domains, Cand. Tech. Sci. Dissertation, St. Petersburg, 2005.

  21. Kulakova, V.I. and Nebylov, A.V., Guaranteed Estimation of Signals with Bounded Variances of Derivatives, Automation and Remote Control, 2008, vol. 69, no. 1, pp. 76–88.

    Article  MathSciNet  MATH  Google Scholar 

  22. Chaoqing Jia snd Jun Hu, Variance-constrained filtering for nonlinear systems with randomly occurring quantized measurements: Recursive scheme and boundedness analysis, Advances in Difference Equations, 2019, Article number: 53 (2019).

  23. Rybinskii, V.O., Rosenwasser, E.N., and Lampe, B.P., Guaranteed Performance for Sampled-Data Systems with Generalized Higher-Order Hold, Proc. 8th IFAC Conference on Control Applications in Marine Systems, Rostock-Warnemünde, 2010.

  24. Ladish, J., Lampe, B.P., Rosenwasser, E.N., and Rybinskii, V.O., Design of digital control systems of gliders movement at uncertainty of external stochastic disturbance. In Proc. Int. Conf. on Naval Architecture and Ocean Engineering, NAOE2016, (ISBN 978-5-883030557-8) [Electronic resource], 2016.

  25. Rybinskii, V.O., Optimization of a Digital Delay Control System for an Underwater Vehicle by the Minimum-Estimate Criterion of Instantaneous Variance, Morskoi vestnik, 2014, no. 2 (50), pp. 80–82.

  26. Nebylov, A.V., Ensuring Control Accuracy, Springer, 2004.

    Book  MATH  Google Scholar 

  27. Jemin, G., Freeman, R., and Lynch, K. Robust dynamic average consensus algorithm for signals with bounded derivatives, Mathematics, Computer Science. American Control Conference (ACC), Seattlle (2017.5.24-2017.5.26)], 2017.

  28. Ferreira Erasmo, Javier Sesma, Two-point derivative dispersion relations. J. Math. Phys., 54, 033507, 2013.

    Article  MathSciNet  MATH  Google Scholar 

  29. Bucz Štefan and Kozáková Alena, Advanced Methods of PID Controller Tuning for Specified Performance, 2018. https://doi.org/10.5772/intechopen.76069

  30. Shamsuzzoha, M., PID Control for Industrial Processes, 2018. ISBN978-1-78923-701-6

  31. Radioavtomatika: Ucheb. posobiye dlya stud. vuzov (Radio Automation: Textbook for university students specializing in radio engineering, Besekersky, V.A. Ed., Moscow: Vysshaya shkola, 1985.

  32. Celentano, L. and Basin M.V., Optimal Estimator Design for LTI Systems with Bounded Noises, Disturbances, and Nonlinearities, Circuits, Systems, and Signal Processing, 2021. vol. 40, pp. 3266–3285.

    Article  Google Scholar 

  33. Celentano, L., Tracking Controllers Design of References with Bounded Derivative. Applied Mathematical Sciences, 2012, vol. 6, no. 95, pp. 4709–4728.

    MathSciNet  MATH  Google Scholar 

  34. Tupysev, V.A., Stepanov, O.A., Loparev, A.V., and Litvinenko Yu.A., Guaranteed Estimation in the Problems of Navigation Information, 3rd IEEE Multi-conf. on Systems and Control, St. Petersburg, 2009, pp. 1672–1677.

  35. Langel S., Crespillo O.G., and Joerger M., Overbounding the effect of uncertain Gauss-Markov noise in Kalman filtering, Navigation: Journal of the Institute of Navigation, June 2021, vol. 68 (2), pp. 259-276. https://doi.org/10.1002/navi.419

    Article  Google Scholar 

  36. Nebylov, A.V. and Zheludev, A.M., Guaranteed accuracy of an integrated coordinate- measuring system, Giroskopiya i Navigatsiya, 1997, no. 1, pp. 45–55.

  37. Nebylov, A.V. and Nebylov, V.A., The design philosopy of a flight control system for a heavy transport wing-in-ground effect craft, Izv. vuzov. Priborostroenie, 2011, vol. 54, no. 8, pp. 35–43.

    Google Scholar 

  38. Kuleshov, E.L., Nonparametric Methods for Extracting Useful Signal and Spectral Estimation with Incomplete Information in Applied Systems for the Analysis of Random Processes, Doct. Tech. Sci. Dissertation (computer science, computer technology, and control), Vladivostok, 1997.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. V. Nebylov or A. V. Loparev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nebylov, A.V., Loparev, A.V. & Nebylov, V.A. Methods for Robust Filtering Based on Numerical Characteristics of Input Processes in Solving Problems of Navigation Information Processing and Motion Control. Gyroscopy Navig. 13, 170–179 (2022). https://doi.org/10.1134/S2075108722030063

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075108722030063

Keywords:

Navigation