Log in

A Two-Frequency Spin Oscillation System for a Quantum Angular Rate Sensor

  • Published:
Gyroscopy and Navigation Aims and scope Submit manuscript

Abstract

The features of a feedback loop in a quantum sensor with a two-frequency spin oscillator are discussed. Engineering solutions that ensure stable two-frequency oscillation and, in particular, the use of automatic gain control units and all-pass filters are considered. The results of experimental studies of oscillation modes conducted on a quantum sensor breadboard are presented for stationary and rotating bases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Budker, D. and Romalis, M., Optical Magnetometry, Nature Phys., 2007, 3(4), pp. 227–234.

    Article  Google Scholar 

  2. Aleksandrov, E.B., and Vershovskii, A.K., Modern radio-optical methods in quantum magnetometry, Uspekhi Fizicheskikh Nauk, 2009, 52.6, pp. 573–601.

    Article  Google Scholar 

  3. Zhivun, E. et al., Dual-axis pi-pulse spin-exchange relaxation-free magnetometer, Physical Review Applied, 18 Mar 2019, 11(3).

  4. Larsen, M. and Bulatowicz, M. Nuclear magnetic resonance gyroscope: for DARPA’s micro-technology for positioning, navigation and timing program, Proc. IEEE Int. Frequency Control Symposium, 2012, pp. 1–5.

  5. Feng, D., Review of quantum navigation, IOP Conf. Series: Earth and Environmental Science, 2019, vol. 237, pp. 032027.

  6. Vershovskii, A.K. and Shevchnko, A.N., Nuclear magnetic resonance gyroscope: principle of operation, history, prospects, 17 konferentsiya molodykh uchenykh “Navigatsiya i upravlenie dvizheniem” (17th Conference of Young Scientists Navigation and Motion Control), Navigatsiya i upravlenie dvizheniem, Materialy 17 konferentsii molodykh uchenykh, 2015, pp. 19–28.

  7. Liu, Y., Shi, M., and Wang, X., Progress on atomic gyroscope, 2017, 24th Saint Petersburg International Conference on Integrated Navigation Systems 2017, pp. 1–7.

  8. Yoshimi, A. et al. Development of NMOR magnetometer for spin-maser EDM experiment, Physics Procedia, 2011, vol. 17, pp. 245–250.

    Article  Google Scholar 

  9. Rosenberry, M.A. and Chupp, T.E., Atomic electric dipole moment measurement using spin exchange pumped masers of 129Xe and 3He, Phys. Rev. Lett., 2001, 86, pp. 22–25.

    Article  Google Scholar 

  10. Walker, T.G. and Larsen, M.S., Spin-exchange-pumped NMR gyros, Advances in Atomic, Molecular, and Optical Physics, 2016, vol. 65, pp. 377–405.

    Google Scholar 

  11. Wang, S.G. et al., Progress on Novel Atomic Magnetometer and Gyroscope Based on Self-sustaining of Electron Spins, China Satellite Navigation Conference, Springer, Singapore, 2017, pp. 535–542.

  12. Vershovskii, A.K., Litmanovich, Yu.A., Pazgalev, A.S., and Peshekhonov, V.G., Nuclear Magnetic Resonance Gyro: Ultimate Parameters, Gyroscopy and Navigation, 2018, vol. 9, pp. 162–176.

    Article  Google Scholar 

  13. Jiang, M. et al. Floquet-state Maser under Real-time Quantum Feedback Control, ar**v preprint arX-iv:1901.00970, 2019.

  14. Sato, T. et al., Development of co-located 129Xe and 131Xe nuclear spin masers with external feedback scheme, Physics Letters A., 2018, vol. 382, no. 8, pp. 588–594.

    Article  Google Scholar 

  15. Inoue T. et al., Frequency characteristics of nuclear spin oscillator with an artificial feedback toward search for 129Xe atomic electric dipole moment, The European Physical Journal D., 2016, vol. 70, no. 6, pp. 129.

    Article  Google Scholar 

  16. Kulachenkov, N.K., Shevchenko, A.N., and Bezmen G.V., Stdying magnetic shields using modern design methods, 18 konferentsiya molodykh uchenykh “Navigatsiya i upravlenie dvizheniem” (18th Conference of Young Scientists “Navigation and Motion Control), Navigatsiya i upravlenie dvizheniem, Materialy 17 konferentsii molodykh uchenykh, 2016, pp. 678–682.

  17. Shevchenko, A.N. and Zakharova E.A., Methods of forming requirements for the magnetic field gradient in determining the metrological characteristics of the nuclear magnetic gyroscope cells, Al’manakh nauchnykh rabot molodykh uchenykh universiteta ITMO (Almanac of Scientific Works of Young Scientists of ITMO University). XLVII Scientific and Educational Conference of ITMO University, 2018, pp. 176–179.

  18. Shevchenko, A.N., Kuz’min, A.G., and Titov Yu.A., Mass spectrometric measurement of the composition of gas mixtures in the cells of a quantum rotation sensor, Nauchnoe priborostroyenie, 2018. vol. 28, no. 2, pp. 62–68.

  19. Shevchenko, A.N. and Zakharova, E.A., Studying the dependence of resonance quality on the distribution of cesium in a cell of a quantum rotation sensor, Nauchno-tekhnicheskii vestnik informatsionnykh tekhnologii, mekhaniki i optiki, 2019. vol. 19, no. 4, pp. 567–573.

  20. Vershovskii, A.K. et al., Influence of polarization characteristics of test light on an optically detectable magnetic resonance signal in magnetometric and gyroscopic quantum sensors, Pis’ma vZhurnal tekhnicheskoi fiziki (Letters in the Journal of Technical Physics), 2019, vol. 45, no. 20, pp. 3–6.

    Google Scholar 

  21. Maleev, N.A., Blokhin, S.A., Bobrov, M.V., Kuzmenkov, A.G., Kulagina, M.M., and Ustinov, V.M., Laser source for a compact gyroscope based on the NMR effect, Giroskopiya i navigatsiya, 2018, vol. 26, no. 1, pp. 81–92.

  22. Popov, E.N. et al., Behavior of signal from optical circuit of quantum rotation sensor based on nuclear magnetic resonance, Gyroscopy and Navigation, 2018, vol. 9, no. 3, pp. 183–190.

    Article  Google Scholar 

  23. Popov, E.N. et al. The frequency shifts of the nuclear magnetic momenta Larmor precession in the mixture of two noble gases, Applied Magnetic Resonance, 2017, vol. 48, no. 8, pp. 761–770.

    Article  Google Scholar 

  24. Popov, E.N. et al. Frequency line of nuclear magnetic resonance in quantum rotation sensor: Negative effect of detection circuit, Gyroscopy and Navigation, 2017, vol. 8, no. 2, pp. 91–96.

    Article  Google Scholar 

  25. Belov, L. et al., Formirovanie kolebanii i signalov (Formation of oscillations and signals), 2nd ed., Textbook for undergraduate and graduate courses, Litres, 2018.

  26. Abubakirov, E.B. and Konyushkov, A.P., On soft and hard oscillation regimes in a backward wave lamp, Izvestiya VUZov, Radiofizika, 2010, vol. 53, pp. 645–651.

    Google Scholar 

  27. Belov, L.A., Bogachev, V.M., and Blagoveshchenskii, M.V., Ustroistva generirovaniya i formirovaniya radiosignalov (Devices for Generation and Formation Radio Signals), A textbook for high schools, Moscow: Radio i svyaz’, 1994.

  28. Medichenko, M.P. and Litvinov, V.P., Radiotekhnicheskiye tsepi i signaly (Radio Engineering Circuits and Signals), A training manual, Moscow: MGOU, 2011

  29. Küpfmüller, K., Über die Dynamik der selbsttätigen Verstärkungsregler, Elektrische Nachrichtentechnik, 1928, vol. 5, no. 11, pp. 459–467.

    Google Scholar 

  30. Plaksienko, V.S. and Plaksienko, N.E., Ustroistva priiema i obrabotki signalov (Devices for Receiving and processing signals), Textbook, Part 3, Taganrog: TRTU. 2001

  31. Fomin, N.N. et al., Radiopriemnye ustroystva (Radio receiving devices) Textbook for High Schools, 3rd edition, Moscow: Goryachaya liniya, Telekom, 2007. c.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. V. Bezmen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bezmen, G.V., Shevchenko, A.N., Kostin, P.N. et al. A Two-Frequency Spin Oscillation System for a Quantum Angular Rate Sensor. Gyroscopy Navig. 11, 115–123 (2020). https://doi.org/10.1134/S2075108720020030

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075108720020030

Keywords:

Navigation