Log in

Heterogeneous water radiolysis in the presence of uranyl silicate

  • Physicochemical Processes at the Interfaces
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

Uranyl silicates with different contents of uranyl are synthesized. For comparison, the radiationcatalytic activities of uranyl silicate with 10% of uranium and initial silicate are studied in the process of radiolytic decomposition of water. Heterogeneous water radiolysis is investigated in the adsorbed and liquid states in contact with uranyl silicate and silicate samples. The effect of the uranyl cations, water state, and process temperature on the yield of molecular hydrogen is revealed. Mechanisms of heterogeneous water radiolysis involving the samples of uranyl silicate and silicate under study are suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Spain)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nechaev, A.F., Petrik, N.G., Sedov, V.M., and Sergeeva, T.B., Radiatsionnaya korroziya konstruktsionnykh materialov yadernykh energeticheskikh ustanovok (Radiation Corrosion of Structural Materials of Nuclear Power Plants), Moscow: Atominform, 1988.

    Google Scholar 

  2. Agaev, T.N., Vopr. At. Nauki Tekh., Ser.: Fiz. Radiats. Povrezhdenii Radiats. Materialoved. 2009, no. 4, p. 202.

  3. Gerasimov, V.V., Korroziya reaktornykh materialov (Corrosion of Reactor Materials), Moscow: Atomizdat, 1980, p. 58.

    Google Scholar 

  4. Garibov, A.A. and Agaev, T.N., Fizikokhim. Poverkhn. Zashch. Mater., Surf., 2014, vol. 50, no. 4, p. 362.

    Google Scholar 

  5. Moll, H., Matz, W., Schuster, G. et al., J. Nucl. Mater., 1995, vol. 227, p. 40.

    Article  Google Scholar 

  6. Prodan, A. and Cojocaru, L., J. Nucl. Mater., 1974, vol. 52, p. 333.

    Article  Google Scholar 

  7. Cojocaru, L.N., J. Phys. Status Solidi, 1968, vol. 29, p. 119.

    Article  Google Scholar 

  8. Jay LaVerne, A. and Tandon, L., J. Phys. Chem. B, 2003, vol. 107, p. 13623.

    Article  Google Scholar 

  9. Sunder, S., Shoesmith, D., and Miller, N., J. Nucl. Mater., 1997, vol. 244, p. 66.

    Article  Google Scholar 

  10. Saltonnay, G., Ardois, C., Corbel, C., et al., J. Nucl. Mater., 2001, vol. 288, p. 11.

    Article  Google Scholar 

  11. Ebaid, Y., J. Radioanal. Nucl. Chem., 2009, vol. 280, p. 21.

    Article  Google Scholar 

  12. Pikaev, A.K., Sovremennaya radiatsionnaya khimiya. Radioliz gazov i zhidkostei (Modern Radiation Chemistry. Radiolysis of Gases and Fluids), Moscow: Nauka, 1986.

    Google Scholar 

  13. Dzhafarov, Ya.D., Garibov, A.A., Aliev, S.A., et al., At. Energ., 1987, vol. 63, p. 269.

    Article  Google Scholar 

  14. Garibov, A.A., in Radiatsionno-kataliticheskie protsessy v dispersnykh sredakh (Radiation-Catalytic Processes in Dispersive Medium), Parmon, V.N., Ed., Novosibirsk: Nauka, 1992, p. 121.

  15. Garibov, A.A., Bakirov, M.Ya., Dzhafarov, Ya.D., and Velibekova, G.Z., Khim. Vys. Energ., 1984, vol. 18, p. 502.

    Google Scholar 

  16. Garibov, A.A., Melikzade, M.M., Bakirov, M.Ya., et al., Khim. Vys. Energ., 1982, vol. 16, no. 2, p. 130.

    Google Scholar 

  17. Ovchinnikov, A.P., in Fizicheskaya khimiya v mikroelektronike (Physical Chemistry in Microelectronics), Krasnoyarsk: Krasn. Gos. Univ., 1976.

    Google Scholar 

  18. Akkerman, A.F., Grudskii, M.Ya., and Smirnov, V.B., Vtorichnoe elektronnoe izluchenie iz tverdykh tel pod deistviem gamma-kvantov (Secondary Electronic Radiation from Solid Bodies Affected by Gamma-Quanta), Moscow: Energoizdat, 1986.

    Google Scholar 

  19. Kovalev, V.P., Vtorichnye elektrony (Secondary Electrons), Moscow: Energoizdat, 1987.

    Google Scholar 

  20. Elango, M.A., Elementarnye neuprugie radiatsionnye protsessy (Elementary Inelastic Radiation Processes), Moscow: Nauka, 1988.

    Google Scholar 

  21. Kaplan, I.P., Khim. Vys. Energ., 1991, vol. 25, no. 4, p. 29.

    Google Scholar 

  22. Silin’, A.R. and Trukhin, A.N., Tochechnye defekty i elementarnye vozbuzhdeniya v kristallicheskom i stekloobraznom SiO 2 (Point Deformations and Elementary Excitations in Crystalline and Glass-Like SiO2), Riga: Zinatne, 1985.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Garibov.

Additional information

Original Russian Text © A.A. Garibov, T.N. Agaev, M.N. Mirzoev, S.M. Aliev, 2015, published in Fizikokhimiya Poverkhnosti i Zashchita Materialov, 2015, Vol. 51, No. 4, pp. 379–384.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garibov, A.A., Agaev, T.N., Mirzoev, M.N. et al. Heterogeneous water radiolysis in the presence of uranyl silicate. Prot Met Phys Chem Surf 51, 527–532 (2015). https://doi.org/10.1134/S2070205115040127

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205115040127

Keywords

Navigation