Log in

Catalytic Hydrogenation of Carbon Dioxide as a Method to Produce Valuable Chemicals

  • CATALYSIS IN CHEMICAL AND PETROCHEMICAL INDUSTRY
  • Published:
Catalysis in Industry Aims and scope Submit manuscript

Abstract

The aim of this review is to summarize and comparatively analyze recent reports on studying carbon dioxide conversion to methanol, dimethyl ether, and C2+ hydrocarbons, in particular, olefins, by catalytic hydrogenation. It is shown that the main approaches to providing high activity and selectivity of these processes are the targeted design of catalysts and the selection of conditions for hydrogenation processes, in particular, the use of supercritical CO2 and procedures that are alternative to conventional physicochemical methods for CO2 activation (electrocatalysis, photocatalysis).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Notes

  1. https://ru.wikipedia.org/wiki/%D0%A3%D0%B3%D0%BB%D-0%B5%D0%BA%D0%B8%D1%81%D0%BB%D1%8B%D0%B9_%D0%B3%D0%B0%D0%B7_%D0%B2_%D0%B0%D1%82%D0%BC%D0%BE%D1%81%D1%84%D0%B5%D1%80%D0%B5_%D0%97%D0%B5%D0%BC%D0%BB%D0%B8

REFERENCES

  1. Porosoff, M.D., Yan, B., and Chen, J.G., Energy Environ. Sci., 2016, vol. 9, no. 1, pp. 62–73. https://doi.org/10.1039/C5EE02657A

    Article  CAS  Google Scholar 

  2. Global Energy & CO2 Status Report: The Latest Trends in Energy and Emissions in 2018, Paris: IEA, 2018. https://iea.blob.core.windows.net/assets/23f9eb39-7493-4722-aced-61433cbffe10/Global_Energy_and_CO2_Sta-tus_Report_2018.pdf. Cited February 26, 2024.

  3. Ramirez, A., Ould-Chikh, S. Gevers, L., Chowdhury, A.D., Abou-Hamad, E., Aguilar-Tapia, A., Hazemann, J-L., Wehbe, N., Al Abdulghani, A.J., Kozlov, S.M., Cavallo, L., and Gascon, J., ChemCatChem, 2019, vol. 11, no. 12, pp. 2879–2886. https://doi.org/10.1002/cctc.201900762

    Article  CAS  Google Scholar 

  4. Sutter, J.D. and Berlinger, J., Final draft of climate deal formally accepted in Paris, Cable News Network, Turner Broadcasting System. https://www.academia.edu/36485719/Main_assignment_tunvir_sir_Cop215. Cited December 12, 2015.

  5. Crippa, M., Guizzardi, D., Muntean, M., Schaaf, E., Solazzo, E., Monforti-Ferrario, F., Olivier, J.G.J., and Vignati, E., Fossil CO2 Emissions of All World Countries: 2020 Report EUR 30358 EN, Luxembourg: Publications Office of the European Union, 2020. https://doi.org/10.2760/143674

    Book  Google Scholar 

  6. Global CO2 emissions rose less than initially feared in 2022 as clean energy growth offset much of the impact of greater coal and oil use. IEA Official Website. https://www.iea.org/news/global-co2-emissions-rose-less-than-initially-feared-in-2022-as-clean-energy-growth-offset-much-of-the-impact-of-greater-coal-and-oil-usewww.iea.org/news/global-co2-emissions-rose-less-than-initially-feared-in-2022-as-clean-energy-growth-offset-much-of-the-impact-of-greater-coal-and-oil-use. Cited 26 February, 2024.

  7. Framework Convention on Climate Change (UNFCCC): Adoption of the Paris Agreement FCCC/CP/2015/L.9/Rev.1, United Nations, 2015. https://unfccc.int/sites/default/files/resource/docs/ 2015/cop21/eng/l09r01.pdf. Cited February 26, 2024.

  8. North, M. and Styring, P., Faraday Discuss., 2015, vol. 183, pp. 489–502. https://doi.org/10.1039/c5fd90077h

    Article  CAS  PubMed  Google Scholar 

  9. Ateka, A., Rodriguez-Vega, P., Ereña, J., Aguayo, A.T., and Bilbao, J., Fuel Process. Technol., 2022, vol. 233, article no. 107310. https://doi.org/10.1016/j.fuproc.2022.107310

    Article  CAS  Google Scholar 

  10. Kamkeng, A.D.N., Wang, M., Hu, J., Du, W., and Qian, F., Chem. Eng. J., 2021, vol. 409, article no. 128138. https://doi.org/10.1016/j.cej.2020.128138

    Article  CAS  Google Scholar 

  11. De, S., Dokania, A., Ramirez, A., and Gascon, J., ACS Catal., 2020, vol. 10, no. 23, pp. 14147–14185. https://doi.org/10.1021/acscatal.0c04273

    Article  CAS  Google Scholar 

  12. Yaashikaa, P.R., Kumar, P.S., Varjani, S.J., and Saravanan, A., J. CO2 Util., 2019, vol. 33, pp. 131–147. .https://doi.org/10.1016/j.jcou.2019.05.01713

  13. Chen, G., Wang, L. Godfroid, T., and Snyders, R., in Plasma Chemistry and Gas Conversion, Britun, N. and Silva, T., Eds., London: IntechOpen, 2018, ch. 4. https://doi.org/10.5772/intechopen.80798

    Book  Google Scholar 

  14. Jarvis, S.M. and Samsatli, S., Renewable Sustainable Energy Rev., 2018, vol. 85, pp. 46–68. https://doi.org/10.1016/j.rser.2018.01.007

    Article  CAS  Google Scholar 

  15. Donphai, W., Witoon, T., Faungnawakij, K., and Chareonpanich, M., J. CO2 Util., 2016, vol. 16, pp. 245–256. https://doi.org/10.1016/j.jcou.2016.07.011

  16. Yan, N. and Philippot, K., Curr. Opin. Chem. Eng., 2018, vol. 20, pp. 86–92. https://doi.org/10.1016/j.coche.2018.03.006

    Article  Google Scholar 

  17. Carbon Dioxide Utilization to Sustainable Energy and Fuels, Inamuddin, Boddula, R., Ahamed, M.I., and Khan, A., Eds., Cham: Springer, 2021. https://doi.org/10.1007/978-3-030-72877-9

    Book  Google Scholar 

  18. CO2 Hydrogenation Catalysis, Himeda, Y., Ed., Weinheim: Wiley-VCH, 2021. https://doi.org/10.1002/9783527824113

    Book  Google Scholar 

  19. Wang, M. and Oko, E., Int. J. Coal Sci. Technol., 2017, vol. 4, pp. 1–4. https://doi.org/10.1007/s40789-017-0162-5

    Article  Google Scholar 

  20. Peters, M., Köhler, B., Kuckshinrichs, W., Leitner, W., Markewitz, P., and Müller, T.E., ChemSusChem, 2011, vol. 4, no. 9, pp. 1216–1240. https://doi.org/10.1002/cssc.201000447

    Article  CAS  PubMed  Google Scholar 

  21. Salvi, B.L. and **dal, S., SN Appl. Sci., 2019, vol. 1, article no. 885. https://doi.org/10.1007/s42452-019-0909-2

    Article  CAS  Google Scholar 

  22. Rubin, E.S., Mantripragada, H., Marks, A., Versteeg, P., and Kitchin, J., Prog. Energy Combust. Sci., 2012, vol. 38, no. 5, pp. 630–671. https://doi.org/10.1016/j.pecs.2012.03.003

    Article  CAS  Google Scholar 

  23. Al-Mamoori, A., Krishnamurthy, A., Rownaghi, A.A., and Rezaei, F., Energy Technol., 2017, vol. 5, no. 6, pp. 834–849. https://doi.org/10.1002/ente.201600747

    Article  Google Scholar 

  24. Horowitz, C.A., Int. Leg. Mater., 2016, vol. 55, no. 4, pp. 740–755. https://doi.org/10.1017/s0020782900004253

    Article  Google Scholar 

  25. Fu, H-C., You, F., Li, H-R., and He, L-N., Front. Chem., 2019, vol. 7, article no. 525. https://doi.org/10.3389/fchem.2019.00525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Makaryan, I.A., Sedov, I.V., and Maksimov, A.L., Russ. J. Appl. Chem., 2020, vol. 93, no. 12, pp. 1815–1830. https://doi.org/10.1134/S1070427220120034

    Article  CAS  Google Scholar 

  27. Pearson, R.J., Eisaman, M.D., Turner, J.W.G., Edwards, P.P., Jiang, Z., Kuznetsov, V.L., Littau, K.A., di Marco, L., and Taylor, S.R.G., Proc. IEEE, 2012, vol. 100, no. 2, pp. 440–460. https://doi.org/10.1109/JPROC.2011.2168369

    Article  CAS  Google Scholar 

  28. Nedolivko, V.V., Zasypalov, G.O., Vutolkina, A.V., Gushchin, P.A., Vinokurov, V.A., Kulikov, L.A., Egazar’yants, S.V., Karakhanov, E.A., Maksimov, A.L., and Glotov, A.P., Russ. J. Appl. Chem., 2020, vol. 93, no. 6, pp. 765–787. https://doi.org/10.1134/S1070427220060014

    Article  CAS  Google Scholar 

  29. CO2: A Valuable Source of Carbon, De Falco, M., Iaquaniello, G., and Centi, G., Eds., London: Springer, 2013. https://doi.org/10.1007/978-1-4471-5119-7

    Book  Google Scholar 

  30. Kaiser, P., Unde, R.B., Kern, C., and Jess, A., Chem. Ing. Tech., 2013, vol. 85, no. 4, pp. 489–499. https://doi.org/10.1002/cite.201200179

    Article  CAS  Google Scholar 

  31. Su, X., Yang, X., Zhao, B., and Huang, Y., J. Energy Chem., 2017, vol. 26, no. 5, pp. 854–867. https://doi.org/10.1016/j.jechem.2017.07.006

    Article  Google Scholar 

  32. Rezaei, E. and Dzuryk, R.S., Chem. Eng. Res. Des., 2019, vol. 144, pp. 354–369. https://doi.org/10.1016/j.cherd.2019.02.005

    Article  CAS  Google Scholar 

  33. Trusov, B.G., Abstract of Papers, Proc. XIV Int. Symp. on Chemical Thermodynamics, St. Petersburg, 2002, pp. 483–484.

  34. Smith, B.R.J., Loganathan, M., and Shantha, M.S., Int. J. Chem. React. Eng., 2010, vol. 8, no. 1. https://doi.org/10.2202/1542-6580.2238

  35. Savchenko, V.I., Zimin, Ya.S., Buzilo, E., Nikitin, A.V., Sedov, A.V., and Arutyunov, V.S., Pet. Chem., 2022, vol. 62, no. 5, pp. 515–525. https://doi.org/10.1134/S0965544122050048

    Article  CAS  Google Scholar 

  36. Li, Y.-N., He, L.-N., Liu, A.-H., Lang, X.-D., Yang, Z.-Z., Yu, B., and Luan, C.-R., Green Chem., 2013, vol. 15, no. 10, pp. 2825–2829. https://doi.org/10.1039/C3GC41265B

    Article  CAS  Google Scholar 

  37. Rezayee, N.M., Huff, C.A., and Sanford, M.S., J. Am. Chem. Soc., 2015, vol. 137, no. 3, pp. 1028–1031. https://doi.org/10.1021/ja511329m

    Article  CAS  PubMed  Google Scholar 

  38. Kothandaraman, J., Goeppert, A., Czaun, M., Olah, G.A., and Prakash, G.K. S., J. Am. Chem. Soc., 2016, vol. 138, no. 3, pp. 778–781. https://doi.org/10.1021/jacs.5b12354

    Article  CAS  PubMed  Google Scholar 

  39. Kothandaraman, J., Goeppert, A., Czaun, M., Olah, G.A., and Prakash, G.K.S., Green Chem., 2016, vol. 18, no. 21, pp. 5831–5838. https://doi.org/10.1039/c6gc01165a

    Article  CAS  Google Scholar 

  40. Su, J., Lu, M., and Lin, H., Green Chem., 2015, vol. 17, no. 5, pp. 2769–2773. https://doi.org/10.1039/c5gc00397k

    Article  CAS  Google Scholar 

  41. Reller, C., Pöge, M., Lißner, A., and Mertens, F.O.R.L., Environ. Sci. Technol., 2014, vol. 48, no. 24, p. 14799–14804. https://doi.org/10.1021/es503914d

    Article  CAS  PubMed  Google Scholar 

  42. Bobadilla, L.F., Riesco-García, J.M., Penelás-Pérez, G., and Urakawa, A., J. CO2 Util., 2016, vol. 14, pp. 106–111. https://doi.org/10.1016/j.jcou.2016.04.003

  43. Su, X., Yang, X.-F., Huang, Y., Liu, B., and Zhang, T., Acc. Chem. Res., 2019, vol. 52, no. 3, pp. 656–664. https://doi.org/10.1021/acs.accounts.8b00478

    Article  CAS  PubMed  Google Scholar 

  44. Daza, Y.A. and Kuhn, J.N., RSC Adv., 2016, vol. 6, no. 55, pp. 49675–49691. https://doi.org/10.1039/c6ra05414e

    Article  CAS  Google Scholar 

  45. Chen, X., Su, X., Su, H.-Y., Liu, X., Miao, S., Zhao, Y., Sun, K., Huang, Y., and Zhang, T., ACS Catal., 2017, vol. 7, no. 7, pp. 4613–4620. https://doi.org/10.1021/acscatal.7b00903

    Article  CAS  Google Scholar 

  46. Aziz, M.A.A., Jalil, A.A., Triwahyono, S., and Ahmad, A., Green Chem., 2015, vol. 17, no. 5, pp. 2647–2663. https://doi.org/10.1039/c5gc0019f

    Article  CAS  Google Scholar 

  47. Wang, Y., Winter, L.R., Chen, J.G., and Yan, B., Green Chem., 2021, vol. 23, no. 1, pp. 249–267. https://doi.org/10.1039/D0GC03506H

    Article  CAS  Google Scholar 

  48. Kattel, S., Liu, P., and Chen, J.G., J. Am. Chem. Soc., 2017, vol. 139, no. 29, pp. 9739–9754. https://doi.org/10.1021/jacs.7b05362

    Article  CAS  PubMed  Google Scholar 

  49. Li, Y.-N., He, L.-N., Lang, X.-D., Liu, X.-F., and Zhang, S., RSC Adv., 2014, vol. 4, no. 91, pp. 49995–50002. https://doi.org/10.1039/c4ra08740b

    Article  CAS  Google Scholar 

  50. Li, W., Wang, H., Jiang, X., Zhu, J., Liu, Z., Guo, X., and Song, C., RSC Adv., 2018, vol. 8, no. 14, pp. 7651–7669. https://doi.org/10.1039/c7ra13546g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sharma, P., Sebastian, J., Ghosh, S., Creaser, D., and Olsson, L., Catal. Sci. Technol., 2021, vol. 11, no. 5, pp. 1665–1697. https://doi.org/10.1039/d0cy01913e

    Article  CAS  Google Scholar 

  52. Rafiee, A., Khalilpour, K.R., Milani, D., and Panahi, M., J. Environ. Chem. Eng., 2018, vol. 6, no. 5, pp. 5771–5794. https://doi.org/10.1016/j.jece.2018.08.065

    Article  CAS  Google Scholar 

  53. Shoinkhorova, T., Cordero-Lanzac, T., Ramirez, A., Chung, S., Dokania, A., Ruiz-Martinez, J., and Gascon, J., ACS Catal., 2021, vol. 11, no. 6, pp. 3602–3613. https://doi.org/10.1021/acscatal.0c05133

    Article  CAS  Google Scholar 

  54. Pérez-Uriarte, P., Ateka, A., Gamero, M., Aguayo, A.T., and Bilbao, J., Ind. Eng. Chem. Res., 2016, vol. 55, no. 23, pp. 6569–6578. https://doi.org/10.1021/acs.iecr.6b00627

    Article  CAS  Google Scholar 

  55. Fan, W.K. and Tahir, M., J. Environ. Chem. Eng., 2021, vol. 9, no. 4, article no. 105460. https://doi.org/10.1016/j.jece.2021.105460

    Article  CAS  Google Scholar 

  56. Galadima, A. and Muraza, O., Renewable Sustainable Energy Rev., 2019, vol. 115, no. 11, article no. 109333. https://doi.org/10.1016/j.rser.2019.109333

    Article  CAS  Google Scholar 

  57. Tahir, M. and Tahir, B., Chem. Eng. J., 2020, vol. 400, article no. 125868. https://doi.org/10.1016/j.cej.2020.125868

    Article  CAS  Google Scholar 

  58. Azzolina-Jury, F., J. Ind. Eng. Chem., 2019, vol. 71, pp. 410–424. https://doi.org/10.1016/j.jiec.2018.11.053

    Article  CAS  Google Scholar 

  59. Manthiram, K., Beberwyck, B.J., and Alivisatos, A.P., J. Am. Chem. Soc., 2014, vol. 136, no. 38, pp. 13319–13325. https://doi.org/10.1021/ja5065284

    Article  CAS  PubMed  Google Scholar 

  60. Alitalo, A., Niskanen, M., and Aura, E., Bioresour. Technol., 2015, vol. 196, pp. 600–605. https://doi.org/10.1016/j.biortech.2015.08.021

    Article  CAS  PubMed  Google Scholar 

  61. Ryu, U.J., Kim, S.J., Lim, H.-K., Kim, H., Choi, K.M., and Kang, J.K., Sci. Rep., 2017, vol. 7, no. 1, article no. 612. https://doi.org/10.1038/s41598-017-00574-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Vogt, C., Monai, M., Kramer, G.J., and Weckhuysen, B.M., Nat. Catal., 2019, vol. 2, pp. 188–197. https://doi.org/10.1038/s41929-019-0244-4

    Article  CAS  Google Scholar 

  63. Audi e-gas Project, Germany. https://www.power-technology.com/marketdata/audi-e-gas-project-germany/. Cited February 26, 2024.

  64. Swickrath, M.J. and Anderson, M., Abstract of Papers, Proc. 42nd Int. Conf. on Environmental Systems, San Diego, CA, 2012, paper no. AIAA 2012-3586. https://doi.org/10.2514/6.2012-3586

  65. Makaryan, I.A., Rudakova, M.I., Savchenko, V.I., and Arutyunov, V.S., Mir Nefteprod.: Vestn. Neft. Kompanii, 2011, no. 10, pp. 3–9.

  66. Makaryan, I.A., Rudakova, M.I., and Savchenko, V.I., Mir Nefteprod.: Vestn. Neft. Kompanii, 2011, no. 11, pp. 3–9.

  67. Olah, G.A., Goeppert, A., and Prakash, G.K.S., Beyond Oil and Gas: The Methanol Economy, Weinheim: Wiley-VCH, 2009.

    Book  Google Scholar 

  68. Zhong, J., Yang, X., Wu, Z., Linag, B., Huang, Y., and Zhang, T., Chem. Soc. Rev., 2020, vol. 4, no. 5, pp. 1385–1413. https://doi.org/10.1039/c9cs00614a

    Article  CAS  Google Scholar 

  69. Dang, S.S., Yang, H., Gao, P., Wang, H., Li, X., Wei, W., and Sun, Y., Catal. Today, 2019, vol. 330, pp. 61–75. https://doi.org/10.1016/j.cattod.2018.04.021

    Article  CAS  Google Scholar 

  70. Ye, R.-P., Ding, J., Gong, W., Argyle, M.D., Zhong, Q., Wang, Y., Russell, C.K., Xu, Z., Russell, A.G., Li, Q., Fan, M., and Yao, Y.-G., Nat. Commun., 2019, vol. 10, article no. 5698. https://doi.org/10.1038/s41467-019-13638-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Din, I.U., Shaharun, M.S., Alotaibi, M.A., Alharthi, A.I., and Naeem, A., J. CO2 Util., 2019, vol. 34, pp. 20–33. https://doi.org/10.1016/j.jcou.2019.05.036

  72. Guil-López, R., Mota, N., Llorente, J., Millán, E., Pawelec, B., Fierro, J.L.G., and Navarro, R.M., Materials, 2019, vol. 12, no. 23, article no. 3902. https://doi.org/10.3390/ma12233902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Huš, M., Kopač, D., Štefančič, N.S., Jurković, D.L., Dasireddy, V.D.B.C., and Likozar, B., Catal. Sci. Technol., 2017, vol. 7, no. 24, pp. 5900–5913. https://doi.org/10.1039/c7cy01659j

    Article  CAS  Google Scholar 

  74. Kopač, D., Likozar, B., and Huš, M., Appl. Surf. Sci., 2019, vol. 497, article no. 143783. https://doi.org/10.1016/j.apsusc.2019.143783

    Article  CAS  Google Scholar 

  75. Ojelade, O.A. and Zaman, S.F., Catal. Surv. Asia, 2020, vol. 24, no. 1, pp. 11–37. https://doi.org/10.1007/s10563-019-09287-z

    Article  CAS  Google Scholar 

  76. Martin, O., Martín, A.J., Mondelli, C., Mitchell, S., Segawa, T.F., Hauert, R., Drouilly, C., Curulla-Ferré, D., and Pérez-Ramírez, J., Angew. Chem., Int. Ed., 2016, vol. 55, no. 21, pp. 6261–6265. https://doi.org/10.1002/anie.201600943

    Article  CAS  Google Scholar 

  77. Jiang, Z., **ao, T., Kuznetsov, V.L., and Edwards, P.P., Phil. Trans. Roy. Soc. A, 2010, vol. 368, no. 1923, pp. 3343–3364. https://doi.org/10.1098/rsta.2010.0119

  78. Balzarotti, R., Ambrosetti, M., Beretta, A., Groppi, G., and Tronconi, E., Chem. Eng. J., 2020, vol. 391, article no. 123394. https://doi.org/10.1016/j.cej.2019.123494

    Article  CAS  Google Scholar 

  79. Kapteijn, F. and Moulijn, J.A., Catal. Today, 2022, vol. 383, pp. 5–14. https://doi.org/10.1016/j.cattod.2020.09.026

    Article  CAS  Google Scholar 

  80. Gancarczyk, A., Sindera, K., Iwaniszyn, M., Piątek, M., Macek, W., Jodłowski, P.J., Wroński, S., Sitarz, M., Łojewska, J., and Kołodziej, A., Catalysts, 2019, vol. 9, no. 7, article no. 587. https://doi.org/10.3390/catal9070587

    Article  CAS  Google Scholar 

  81. Rui, N., Wang, Z., Sun, K., Ye, J., Ge, Q., and Liu, C., Appl. Catal., B, 2017, vol. 218, pp. 488–497. https://doi.org/10.1016/j.apcatb.2017.06.069

    Article  CAS  Google Scholar 

  82. Rodriguez, J.A., Liu, P., Stacchiola, D.J., Senanayake, S., White, M.G., and Chen, J.G., Hydrogenation of CO2 to methanol: importance of metal-oxide and metal-carbide interfaces in the activation of CO2, paper no. BNL-108509-2015-JA, Department of Chemistry, Brookhaven National Laboratory. https://www.bnl.gov/isd/documents/89413.pdf. Cited February 26, 2024.

  83. Chakrabortty, S., Nayak, J., Ruj, B., Pal, P., Kumar, R., Banerjee, S., Sardar, M., and Chakraborty, P., J. Environ. Chem. Eng., 2020, vol. 8, no. 4, article no. 103935. https://doi.org/10.1016/j.jece.2020.103935

    Article  CAS  Google Scholar 

  84. Bellotti, D., Dierks, M., Moellenbruck, F., Magistri, L., Görner, K., and Oeljeklaus, G., E3S Web Conf., 2019, vol. 113, article no. 01013. https://doi.org/10.1051/e3sconf/201911301013

  85. Etim, U.J., Song, Y., and Zhong, Z., Front. Energy Res., 2020, vol. 8, article no. 545431. https://doi.org/10.3389/fenrg.2020.545431

    Article  Google Scholar 

  86. Zohour, B., Yilgor, I., Gulgun, M.A., Birer, O., Unal, U., Leidholm, C., and Senkan, S., ChemCatChem, 2016, vol. 8, no. 8, pp. 1464–1469. https://doi.org/10.1002/cctc.201600020

    Article  CAS  Google Scholar 

  87. Fiordaliso, E.M., Sharafutdinov, I., Carvalho, H.W.P., Grunwaldt, J.-D., Hansen, T.W., Chorkendorff, I., Wagner, J.B., and Damsgaard, C.D., ACS Catal., vol. 5, no. 10, pp. 5827–5836. https://doi.org/10.1021/acscatal.5b01271

  88. Studt, F., Sharafutdinov, I., Abild-Pedersen, F., Elkjær, C.F., Hummelshøj, J.S., Dahl, S., Chorkendorff, I., and Nørskov, J.K., Nat. Chem., 2014, vol. 6, pp. 320–324. https://doi.org/10.1038/nchem.1873

    Article  CAS  PubMed  Google Scholar 

  89. Pavlišič, A., Huš, M., Prašnikar, A., and Likozar, B., J. Cleaner Prod., 2020, vol. 275, article no. 122958, https://doi.org/10.1016/j.jclepro.2020.122958

    Article  CAS  Google Scholar 

  90. Li, S., Guo, L., and Ishihara, T., Catal. Today, 2020, vol. 339, pp. 352–361. https://doi.org/10.1016/j.cattod.2019.01.015

    Article  CAS  Google Scholar 

  91. US Patent 8198338B2, 2012.

  92. Hindman, M., in Gasification Technologies Conference 2009, Gasification Technologies Council: Arlington, VA, 2009, pp. 247–261. https://www.proceedings.com/content/023/023225webtoc.pdf. Cited February 27, 2024.

  93. Bandi, A. and Specht, M., in Landolt–Börnstein: Numerical Data and Functional Relationships in Science and Technology, vol. III/Group VIII: Energy Technologies/Advanced Materials and Technologies, subvol. C: Renewable Energy, Heidelberg–Berlin: Springer, 2006, pp. 441–482.

  94. Zhang, H. and Desideri, U., Energy, 2020, vol. 199, article no. 117498. https://doi.org/10.1016/j.energy.2020.117498

    Article  CAS  Google Scholar 

  95. Dimethyl Ether Market Size, Share & COVID-19 Impact Analysis, by Application (LPG Blending, Aerosol Propellant, Transportation Fuel, and Others), and Regional Forecast, 2021–2028. https://www.fortunebusinessinsights.com/dimethyl-ether-market-104309. Cited February 27, 2024.

  96. Dement'ev, K.I., Dement’eva, O.S., Ivantsov, M.I., Kulikova, M.V., Magomedova, M.V., Maksimov, A.L., Lyadov, A.S., Starozhitskaya, A.V., and Chudakova, M.V., Neftekhimiya, 2022, vol. 62, no. 3, pp. 289–327. https://doi.org/10.31857/S0028242122030017

    Article  Google Scholar 

  97. Ham, H., Baek, S.W., Shin, C.-H., and Bae, J.W., ACS Catal., 2018, vol. 9, no. 1, pp. 679–690. https://doi.org/10.1021/acscatal.8b04060

    Article  CAS  Google Scholar 

  98. Nie, X., Jiang, X., Wang, H., Luo, W., Janik, M.J., Chen, Y., Guom, X., and Song, C., ACS Catal., 2018, vol. 8, no. 6, pp. 4873–4892. https://doi.org/10.1021/acscatal.7b04150

    Article  CAS  Google Scholar 

  99. Saravanan, K., Ham, H., Tsubaki, N., and Bae, J.W., Appl. Catal., B, 2017, vol. 217, pp. 494–522. https://doi.org/10.1016/j.apcatb.2017.05.085

    Article  CAS  Google Scholar 

  100. Phienluphon, R., Pinkaew, K., Yang, G., Li, J., Wei, Q., Yoneyama, Y., Vitidsant, T., and Tsubaki, N., Chem. Eng. J., 2015, vol. 270, pp. 605–611. https://doi.org/10.1016/j.cej.2015.02.071

    Article  CAS  Google Scholar 

  101. Sánchez-Contador, M., Ateka, A., Aguayo, A.T., and Bilbao, J., Fuel Process. Technol., 2018, vol. 179, pp. 258–268. https://doi.org/10.1016/j.fuproc.2018.07.009

    Article  CAS  Google Scholar 

  102. Koohsaryan, E. and Anbia, M., Chin. J. Catal., 2016, vol. 37, no. 4, pp. 447–467. https://doi.org/10.1016/S1872-2067(15)61038-5

    Article  CAS  Google Scholar 

  103. Formic Acid Market—Growth, Trends, Covid-19 Impact, and Forecasts (2022–2027). https://www.mordorinitelligence.com/industry-reports/formic-acid-market. Cited February 26, 2024.

  104. Onishi, N., Kanega, R., and Kawanami, H., Himeda, Y., Molecules, 2022, vol. 27, no. 2, article no. 455. https://doi.org/10.3390/molecules27020455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Sordakis, K., Tang, C., Vogt, L.K., Junge, H., Dyson, P.J., Belle, M., and Laurenczy, G., Chem. Rev., 2018, vol. 118, no. 2, pp. 372–433. https://doi.org/10.1021/acs.chemrev.7b00182

    Article  CAS  PubMed  Google Scholar 

  106. Sun, R., Liao, Y., Bai, S-T., Zheng, M., Zhou, C., Zhang, T., and Sels, B.F., Energy Environ. Sci., 2021, vol. 14, no. 3, pp. 1247–1285. https://doi.org/10.1039/D0EE03575K

    Article  CAS  Google Scholar 

  107. Roy, S., Cherevotan, A., and Peter, S.C., ACS Energy Lett., 2018, vol. 3, no. 8, pp. 1938–1966. https://doi.org/10.1021/acsenergylett.8b00740

    Article  CAS  Google Scholar 

  108. Wang, W., Wang, S., Ma, X., and Gong, J., Chem. Soc. Rev., 2011, vol. 40, no. 7, pp. 3703–3727. https://doi.org/10.1039/C1CS15008A

    Article  CAS  PubMed  Google Scholar 

  109. Prieto, G., ChemSusChem, 2017, vol. 10, no. 6, pp. 1056–1070. https://doi.org/10.1002/cssc.201601591

    Article  CAS  PubMed  Google Scholar 

  110. Yang, H., Zhang, C., Gao, P., Wang, H., Li, X., Zhong, L., Wei, W., and Sun, Y., Catal. Sci. Technol., 2017, vol. 7, no. 20, pp. 4580–4598. https://doi.org/10.1039/C7CY01403A

    Article  CAS  Google Scholar 

  111. Hwang, S.-M., Han, S.J., Min, J.E., Park, H.-G., Jun, K.-W., and Kim, S.K., J. CO2 Util., 2019, vol. 34, pp. 522–532. https://doi.org/10.1016/J.JCOU.2019.08.004

  112. Guo, L., Cui, Y., Zhang, P., Peng, X., Yoneyama, Y., Yang, G., and Tsubaki, N., ChemistrySelect, 2018, vol. 3, no. 48, pp. 13705–13711. https://doi.org/10.1002/SLCT.201803335

    Article  CAS  Google Scholar 

  113. Yao, B., Ma, W., Gonzalez-Cortes, S., **ao, T., and Edwards, P.P., Greenhouse Gases: Sci. Technol., 2017, vol. 7, no. 5, pp. 942–957. https://doi.org/10.1002/ghg.1694

    Article  CAS  Google Scholar 

  114. Mikulčić, H., Ridjan, S.I., Dominković, D.F., Wan Alwi, S.R., Manan, Z.A., Tan, R., Duić, N., Mohamad, H.S.N., and Wang, X., Renewable Sustainable Energy Rev., 2019, vol. 114, article no. 109338. https://doi.org/10.1016/j.rser.2019.109338

    Article  CAS  Google Scholar 

  115. Saeidi, S., Najari, S., Hessel, V., Wilson, K., Keil, F.J., Concepción, P., Suib, S.L., and Rodrigues, A.E., Prog. Energy Combust. Sci., 2021, vol. 85, article no. 100905. https://doi.org/10.1016/j.pecs.2021.100905

    Article  Google Scholar 

  116. Modak, A., Bhanja, P., Dutta, S., Chowdhury, B., and Bhaumik, A., Green Chem., 2020, vol. 22, no. 13, pp. 4002–4033. https://doi.org/10.1039/D0GC01092H

    Article  CAS  Google Scholar 

  117. Li, J., Wang, L., Cao, Y., Zhang, C., He, P., and Li, H., Chin. J. Chem. Eng., 2018, vol. 26, no. 11, pp. 2266–2279. https://doi.org/10.1016/J.CJCHE.2018.07.008

    Article  CAS  Google Scholar 

  118. Khangale, P.R., Catal. Lett., 2022, vol. 152, no. 3, pp. 2745–2755. https://doi.org/10.1007/s10562-021-03849-5

    Article  CAS  Google Scholar 

  119. Gao, P., Zhang, L., Li, S., Zhou, Z., and Sun, Y., ACS Cent. Sci., 2020, vol. 6, no. 10, pp. 1657–1670. https://doi.org/10.1021/acscentsci.0c00976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Wang, W., Wang, X., Zhang, G., Wang, K., Zhang, F., Yan, T., Miller, J.T., Guo, X., and Song, C., Front. Chem. Eng., 2021, vol. 3, article no. 708014. https://doi.org/10.3389/fceng.2021.708014

    Article  Google Scholar 

  121. Kim, J.-S., Lee, S.-B., Kang, M.-C., Lee, K.-W., Choi, M.-J., and Yong, KangY., Korean J. Chem. Eng., 2003, vol. 20, no. 5, pp. 967–972. https://doi.org/10.1007/BF02697307

    Article  CAS  Google Scholar 

  122. Gao, P., Li, S., Bu, X., Dang, S., Liu, Z., Wang, H., Zhong, L., Qiu, M., Yang, C., Cai, J., Wei, W., and Sun, Y., Nat Chem., 2017, vol. 9, no. 10, pp. 1019–1024. https://doi.org/10.1038/nchem.2794

    Article  CAS  PubMed  Google Scholar 

  123. Wei, J., Ge, Q., Yao, R., Wen, Z., Fang, C., Guo, L., Xu, H., and Sun, J., Nat. Commun., 2017, vol. 8, pp. 15174–15181. https://doi.org/10.1038/ncomms15174

    Article  PubMed  PubMed Central  Google Scholar 

  124. Fujiwara, M., Sakurai, H., Shiokawa, K., and Iizuka, Y., Catal. Today, 2015, vol. 242, part B, pp. 255–260. https://doi.org/10.1016/j.cattod.2014.04.032

  125. Owen, R.E., O’byrne, J.P., Mattia, D., Plucinski, P., Pascu, S.I., and Jones, M.D, Chem. Commun., 2013, vol. 49, no. 99, pp. 11683–11685. https://doi.org/10.1039/C3CC46791K

    Article  CAS  Google Scholar 

  126. Owen, R.E., Plucinski, P., Mattia, D., Torrente-Murciano, L., Ting, V.P., and Jones, M.D., J. CO2 Util., 2016, vol. 16, pp. 97–103. https://doi.org/10.1016/j.jcou.2016.06.009

  127. Owen, R.E., Mattia, D., Plucinski, P., and Jones, M.D., ChemPhysChem, 2017, vol. 18, no. 22, pp. 3211–3218. https://doi.org/10.1002/cphc.201700422

    Article  CAS  PubMed  Google Scholar 

  128. Rodemerck, U., Holeňa, M., Wagner, E., Smejkal, Q., Barkschat, A., and Baerns, M., ChemCatChem, 2013, vol. 5, no. 7, pp. 1948–1955. https://doi.org/10.1002/cctc.201200879

    Article  CAS  Google Scholar 

  129. Calizzi, M., Mutschler, R., Patelli, N., Migliori, A., Zhao, K., Pasquini, L., and Züttel, A., Nanomaterials, 2020, vol. 10, no. 7, article no. 1360. https://doi.org/10.3390/nano10071360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Esquius, J.R., Bahruji, H., Bowker, M., and Hutchings, G.J., Faraday Discuss., 2021, vol. 230, pp. 52–67. https://doi.org/10.1039/D0FD00135J

    Article  Google Scholar 

  131. Choi, Y.H., Jang, Y.J., Park, H., Kim, W.Y., Lee, Y.H., Choi, S.H., and Lee, J.S., Appl. Catal., B, 2017, vol. 202, pp. 605–610. https://doi.org/10.1016/j.apcatb.2016.09.072

    Article  CAS  Google Scholar 

  132. Qian, Q., Zhang, J., Cui, M., and Han, B., Nat. Commun., 2016, vol. 7, article no. 11481. https://doi.org/10.1038/ncomms11481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. He, Z., Cui, M., Qian, Q., Zhang, J., Liu, H., and Han, B., PNAS Nexus, 2019, vol. 116, no. 26, pp. 12654–12659. https://doi.org/10.1073/pnas.1821231116

    Article  CAS  Google Scholar 

  134. Wang, Q., Chen, Y., and Li, Z., J. Nanosci. Nanotechnol., 2019, vol. 19, no. 6, pp. 3162–3172. https://doi.org/10.1166/jnn.2019.16586

    Article  CAS  PubMed  Google Scholar 

  135. Ma, Z. and Porosoff, M.D., ACS Catal., 2019, vol. 9, no. 3, pp. 2639–2656. https://doi.org/10.1021/acscatal.8b05060

    Article  CAS  Google Scholar 

  136. Ronda-Lloret, M., Rothenberg, G., and Shiju, N.R., ChemSusChem, 2019, vol. 12, no. 17, pp. 3896–3914. https://doi.org/10.1002/cssc.201900915

    Article  CAS  PubMed  Google Scholar 

  137. Li, Z., Wang, J., Qu, Y., Liu, H., Tang, C., Miao, S., and Feng, Z., An, H., and Li, C., ACS Catal., 2017, vol. 7, no. 12, pp. 8544–8548. /https://doi.org/10.1021/acscatal.7b03251

  138. Witoon, T., Chaipraditgul, N., Numpilai, T., Lapkeatsere, V., Ayodele, B.V., Cheng, C.K., Siri-Nguan, N., Sornchamni, T., and Limtrakul, J., Chem. Eng. Sci., 2021, vol. 233, article no. 116428. https://doi.org/10.1016/j.ces.2020.116428

    Article  CAS  Google Scholar 

  139. Ojelade, O.A. and Zaman, S.F., J. CO2 Util., 2021, vol. 47, article no. 101506. https://doi.org/10.1016/j.jcou.2021.101506

  140. Wang, X., Zhang, J., Chen, J., Ma, Q., Fan, S., and Zhao, T., Chin. J. Chem. Eng., 2018, vol. 26, no. 4, pp. 761–767. https://doi.org/10.1016/J.CJCHE.2017.10.013

    Article  CAS  Google Scholar 

  141. Jiang, F., Liu, B., Geng, S., Xu, Y., and Liu, X., Catal. Sci. Technol., 2018, vol. 8, no. 16, pp. 4097–4107. https://doi.org/10.1039/C8CY00850G

    Article  CAS  Google Scholar 

  142. Wang, S., Zhang, L., Zhang, W., Wang, P., Qin, Z., Yan, W., Dong, M., Li, J., Wang, J., He, L., Olsbye, U., and Fan, W., Chem, 2020, vol. 6, no. 12, pp. 3344–3363. https://doi.org/10.1016/J.CHEMPR.2020.09.025

    Article  CAS  Google Scholar 

  143. Guo, L., Cui, Y., Li, H., Fang, Y., Prasert, R., Wu, J., Yang, G., Yoneyama, Y., and Tsubaki, N., Catal. Commun., 2019, vol. 130, article no. 105759. https://doi.org/10.1016/J.CATCOM.2019.105759

    Article  Google Scholar 

  144. Dang, S., Gao, P., Liu, Z., Chen, X., Yang, C., Wang, H., Zhong, L., Li, S., and Sun, Y., J. Catal., 2018, vol. 364, pp. 382–393. https://doi.org/10.1016/J.JCAT.2018.06.010

    Article  CAS  Google Scholar 

  145. Kangvansura, P., Chew, L.M., Saengsui, W., Santawaja, P., Poo-arporn, Y., Muhler, M., Schulz, H., and Worayingyong, A., Catal. Today, 2016, vol. 275, pp. 59–65. https://doi.org/10.1016/J.CATTOD.2016.02.045

    Article  CAS  Google Scholar 

  146. Ismagilov, Z.R. and Parmon, V.N., Energ. Vestn., 2021, pp. 54–74.

  147. EP Patent 1373166, 2004.

  148. Alekseev, E.S., Alentiev, A.Yu., Belova, A.S., Bogdan, V.I., Bogdan, T.V., Bystrova, A.V., Gafarova, E.R., Golubeva, E.N., Grebenik, E.A., Gromov, O.I., Davankov, V.A., Zlotin, S.G., Kiselev, M.G., Koklin, A.E., Kononevich, Yu.N., Lazhko, A.E., Lunin, V.V., Lyubimov, S.E., Martyanov, O.N., Mishanin, I.I., Muzafarov, A.M., Nesterov, N.S., Nikolaev, A.Yu., Oparin, R.D., Parenago, O.O., Parenago, O.P., Pokusaeva, Ya.A., Ronova, I.A, Solovieva, A.B., Temnikov, M.N., Timashev, P.S., Turova, O.V., Filatova, E.V., Philippov, A.A., Chibiryaev, A.M., and Shalygin, A.S., Russ. Chem. Rev., 2020, vol. 89, no. 12, pp. 1337–1427. https://doi.org/10.1070/RCR4932

    Article  CAS  Google Scholar 

  149. Jessop, P., Ikariya, T., and Noyori, R., Nature, 1994, vol. 368, pp. 231–233. https://doi.org/10.1038/368231a0

    Article  CAS  Google Scholar 

  150. Jessop, P.G., Hsiao, Y., Ikariya, T., and Noyori, R., J. Am. Chem. Soc., 1996, vol. 118, no. 2, pp. 344–355. https://doi.org/10.1021/ja953097b

    Article  CAS  Google Scholar 

  151. Preti, D., Resta, C., Squarcialupi, S., and Fachinetti, G., Angew. Chem., 2011, vol. 123, no. 52, pp. 12759–12762. https://doi.org/10.1002/ange.201105481

    Article  Google Scholar 

  152. WO Patent 2010149507, 2010.

  153. Zhang, Z., Hu, S., Song, J., Li, W., Yang, G., and Han, B., ChemSusChem, 2009, vol. 2, no. 3, pp. 234 – 238. https://doi.org/10.1002/cssc.200800252

    Article  CAS  PubMed  Google Scholar 

  154. Andrushkevich, T.V., Popova, G.Y., Danilevich, E.V., Zolotarskii, I.A., Nakrokhin, V.B., Nikoro, T.A., Stompel, S.I., and Parmon, V.N., Catal. Ind., 2014, vol. 6, no. 1, pp. 17–24. https://doi.org/10.1134/S2070050414010024

    Article  Google Scholar 

  155. Wesselbaum, S., Hintermair, U., and Leitner, W., Angew. Chem., Int. Ed., 2012, vol. 51, no. 34, pp. 8585–8588. https://doi.org/10.1002/anie.201203185

    Article  CAS  Google Scholar 

  156. Span, R. and Wagner, W., J. Phys. Chem. Ref. Data, 1996, vol. 25, no. 6, pp. 1509–1596. https://doi.org/10.1063/1.555991

    Article  CAS  Google Scholar 

  157. Evdokimenko, N.D., Kustov, A.L., Kim, K.O., Igonina, M.S., and Kustov, L.M., Mendeleev Commun., 2018, vol. 28, no. 2, pp. 147–149. https://doi.org/10.1016/j.mencom.2018.03.012

    Article  CAS  Google Scholar 

  158. Gothe, M.L., Pérez-Sanz, F.J., Braga, A.H., Borges, L.R., Abreu, T.F., Bazito, R.C., Gonçalves, R.V., Rossi, L.M., and Vidinha, P., J. CO2 Util., 2020, vol. 40, article no. 101195. https://doi.org/10.1016/j.jcou.2020.101195

  159. Pokusaeva, Ya.A., Gas-phase and supercritical hydrogenation of carbon dioxide on Fe-, Co-, and Ni-containing catalysts, Cand. Sci. (Chem.) Dissertation, Moscow: IOC RAS, 2020.

  160. Bogdan, V.I., Pokusaeva, Ya.A., Koklin, A.E., Savilov, S.V., Chernyak, S.A., Lunin, V.V., and Kustov, L.M., Energy Technol., 2019, vol. 7, no. 9, article no. 1900174. https://doi.org/10.1002/ente.201900174

    Article  CAS  Google Scholar 

  161. Chernyak, S.A., Ivanov, A.S., Stolbov, D.N., Maksimov, S.V., Maslakov, K.I., Chernavskii, P.A., Pokusaeva, Ya.A., Koklin, A.E., Bogdan, V.I., and Savilov, S.V., Carbon, 2020, vol. 168, pp. 475–484. https://doi.org/10.1016/j.carbon.2020.06.067

    Article  CAS  Google Scholar 

  162. Tamaki, Y. and Ishitani, O., ACS Catal., 2017, vol. 7, no. 5, pp. 3394–3409. https://doi.org/10.1021/acscatal.7b00440

    Article  CAS  Google Scholar 

  163. Kuramochi, Y., Ishitani, O., and Ishida, H., Coord. Chem. Rev., 2018, vol. 373, pp. 333–356. https://doi.org/10.1016/j.ccr.2017.11.023

    Article  CAS  Google Scholar 

  164. Sekizawa, K., Maeda, K., Domen, K., Koike, K., and Ishitani, O., J. Am. Chem. Soc., 2013, vol. 135, no. 12, pp. 4596–4599. https://doi.org/10.1021/ja311541a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Kuramochi, Y. and Ishitani, O., Front. Chem., 2019, vol. 7, article no. 259. https://doi.org/10.3389/fchem.2019.00259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Yamazaki, Y., Onoda, T., Ishikawa, J., Furukawa, S., Tanaka, C., Utsugi, T., and Tsubomura, T., Front. Chem., 2019, vol. 7, article no. 288. https://doi.org/10.3389/fchem.2019.00288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Fan, W.K. and Tahir, M., Chem. Eng. J., 2022, vol. 427, article no. 131617. https://doi.org/10.1016/j.cej.2021.131617

    Article  CAS  Google Scholar 

  168. Rotundo, L., Azzi, E., Deagostino, A., Garino, C., Nencini, L., Priola, E., Quagliotto, P., Rocca, R., Gobetto, R., and Nervi, C., Front. Chem., 2019, vol. 7, article no. 417. https://doi.org/10.3389/fchem.2019.00417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Fu, H.-C., You, F., Li, H.-R., and He, L.-N., Front. Chem., 2019, vol. 7, article no. 525. https://doi.org/10.3389/fchem.2019.00525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Talukdar, K., Issa, A., and Jurss, J.W., Front. Chem., 2019, vol. 7, article no. 330. https://doi.org/10.3389/fchem.2019.00330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Igarashi, R., Takeuchi, R., Kubo, K., Mizuta, T., and Kume, S., Front. Chem., 2019, vol. 7, article no. 860. https://doi.org/10.3389/fchem.2019.00860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Liu, M., Yi, Y., Wang, L., Guo, H., and Bogaerts, A., Catalysts, 2019, vol. 9, no. 3, article no. 275. https://doi.org/10.3390/catal9030275

    Article  CAS  Google Scholar 

  173. Snoeckx, R. and Bogaerts, A., Chem. Soc. Rev., 2017, vol. 46, no. 19, pp. 5805–5863. https://doi.org/10.1039/C6CS00066E

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was performed under a state task of the Ministry of Science and Higher Education of the Russian Federation (subject no. AAAA-A19-119022690098-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Sedov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makaryan, I.A., Sedov, I.V. & Savchenko, V.I. Catalytic Hydrogenation of Carbon Dioxide as a Method to Produce Valuable Chemicals. Catal. Ind. 16, 14–38 (2024). https://doi.org/10.1134/S2070050424010045

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070050424010045

Keywords:

Navigation