Log in

Variational Approach for Finding the Cost-Optimal Trajectory

  • Published:
Mathematical Models and Computer Simulations Aims and scope

Abstract

Different approaches are used to define the optimal path in terms of construction costs. Such problems in practice are usually solved by various heuristic procedures. To obtain a theoretically justified result, one can derive an integral cost functional under certain assumptions and use variational principles. Thus, the classical problem of the calculus of variations is obtained. The necessary condition for the minimum of such a functional has the form of an integrodifferential equation. This paper describes a numerical algorithm for solving this equation, which is based on the prominent shooting method, which has been studied in detail in the literature. Under additional assumptions, the existence of a solution is proved using Schauder’s fixed point principle. The problem of the uniqueness of the solution is studied. A numerical example is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. D. Gurara, V. Klyuev, N. Mwase, A. Presbitero, X. C. Xu, and G. Bannister, “Trends and challenges in infrastructure investment in low-income develo** countries,” IMF Working Pap. 2017 (233), 1 (2017). https://doi.org/10.5089/9781484324837.001

    Article  Google Scholar 

  2. C. Saranya, M. Unnikrishnan, S. A. Ali, D. S. Sheela, and V. R. Lalithambika, “Terrain based D* algorithm for path planning,” IFAC-PapersOnLine 49, 178–182 (2016). https://doi.org/10.1016/j.ifacol.2016.03.049

    Article  Google Scholar 

  3. J. Carsten, A. Rankin, D. Ferguson, and A. Stentz, “Global planning on the Mars Exploration Rovers: Software integration and surface testing,” J. Field Rob. 26, 337–357 (2009). https://doi.org/10.1002/rob.20287

    Article  Google Scholar 

  4. S. I. Gass and C. M. Harris, “Dijkstra’s algorithm,” in Encyclopedia of Operations Research and Management Science, Ed. by S. I. Gass and C. M. Harris (Springer, New York, 2001), pp. 19–19. https://doi.org/10.1007/1-4020-0611-X_248

    Book  Google Scholar 

  5. X. **ong, H. Min, Yu. Yu, and P. Wang, “Application improvement of A* algorithm in intelligent vehicle trajectory planning,” Math. Biosci.s Eng. 18, 1–21 (2021). https://doi.org/10.3934/mbe.2021001

  6. P. Sudhakara and V. Ganapathy, “Trajectory planning of a mobile robot using enhanced A-star algorithm,” I-ndian J. Sci. Technol. 9 (41), 1–10 (2016). https://doi.org/10.17485/ijst/2016/v9i41/93816

    Article  Google Scholar 

  7. G. R. Chen and S. Guo, “Convex optimization and A-star algorithm combined path planning and obstacle avoidance algorithm,” Control Decis. 35, 2907–2914 (2020).

    Google Scholar 

  8. S. M. Lavalle, Rapidly-Exploring Random Trees: A New Tool For Path Planning: The Annual Research Report (I-owa State Univ., 1998).

    Google Scholar 

  9. D.-Q. He, H.-B. Wang, and P.-F. Li, “Robot path planning using improved rapidly-exploring random tree algorithm,” in 2018 IEEE Industrial Cyber-Physical Systems (ICPS), St. Petersburg, 2018 (IEEE, 2018), pp. 181–186. https://doi.org/10.1109/icphys.2018.8387656

  10. J. Yi, Q. Yuan, R. Sun, and H. Bai, “Path planning of a manipulator based on an improved P_RRT* algorithm,” Complex Intell. Syst. 8, 2227–2245 (2022). https://doi.org/10.1007/s40747-021-00628-y

    Article  Google Scholar 

  11. S. M. Lavalle and J. J. Kuffner, “RRT-connect: An efficient approach to single-query path planning,” in Proc. 2000 ICRA. Millennium Conf. IEEE Int. Conf. on Robotics and Automation. Symposia Proc. (IEEE, San Francisco, 2000), Vol. 2, pp. 995–1001. https://doi.org/10.1109/ROBOT.2000.844730

  12. L. Jaillet, J. Cortés, and T. Siméon, “Sampling-based path planning on configuration-space costmaps,” IEEE Trans. Rob. 26, 635–646 (2010). https://doi.org/10.1109/tro.2010.2049527

    Article  Google Scholar 

  13. Ya. Li, W. Wei, Yo. Gao, D. Wang, and Z. Fan, “PQ-RRT*: An improved path planning algorithm for mobile robots,” Expert Syst. Appl. 152, 113425 (2020). https://doi.org/10.1016/j.eswa.2020.113425

  14. W. Wang, L. Zuo, and X. Xu, “A learning-based multi-RRT approach for robot path planning in narrow passages,” J. Intell. Robotic Syst. 90, 81–100 (2018). https://doi.org/10.1007/s10846-017-0641-3

    Article  Google Scholar 

  15. M. F. Zazai and A. R. Fügenschuh, “Computing the trajectories for the development of optimal routes,” Optim. Eng. 22, 975–999 (2021). https://doi.org/10.1007/s11081-020-09569-w

    Article  MathSciNet  Google Scholar 

  16. J. Yates, X. Wang, and N. Chen, “Assessing the effectiveness of k-shortest path sets in problems of network interdiction,” Optim. Eng. 15, 721–749 (2014). https://doi.org/10.1007/s11081-013-9220-z

    Article  MathSciNet  Google Scholar 

  17. J. Bruce and M. M. Veloso, “Real-time randomized path planning for robot navigation,” in RoboCup 2002: Robot Soccer World Cup VI, Ed. by G. A. Kaminka, P. U. Lima, and R. Rojas, Lecture Notes in Computer Science, Vol. 2752 (Springer, Berlin, 2002), pp. 288–295. https://doi.org/10.1007/978-3-540-45135-8_23

    Book  Google Scholar 

  18. D. H. Douglas, “Least-cost path in GIS using an accumulated cost surface and slopelines,” Cartographica: Int. J. Geographic Inf. Geovisualization 31 (3), 37–51 (1994). https://doi.org/10.3138/d327-0323-2jut-016m

    Article  Google Scholar 

  19. D. Tomlin, “Propagating radial waves of travel cost in a grid,” Int. J. Geogr. Inf. Sci. 24, 1391–1413 (2010). https://doi.org/10.1080/13658811003779152

    Article  Google Scholar 

  20. C. Yu, J. Lee, and M. J. Munro-Stasiuk, “Research article: Extensions to least-cost path algorithms for roadway planning,” Int. J. Geogr. Inf. Sci. 17, 361–376 (2003). https://doi.org/10.1080/1365881031000072645

    Article  Google Scholar 

  21. M. E. Abbasov and A. S. Sharlay, “Searching for the cost-optimal road trajectory on the relief of the terrain,” Vestn. S.-Peterb. Univ. Prikl. Mat. Inf. Protsessy Upr. 17 (1), 4–12 (2021). https://doi.org/10.21638/11701/spbu10.2021.101

    Article  Google Scholar 

  22. N. G. Bandurin and N. A. Gureeva, “A method and a software package for numerical solution of the systems of nonlinear ordinary integro-differential-algebraic equations,” Math. Models Comput. Simul. 4, 455–463 (2012). https://doi.org/10.1134/s2070048212050031

    Article  MathSciNet  Google Scholar 

  23. N. S. Bakhvalov, N. P. Zhidkov, and G. M. Kobel’kov, Numerical Methods (Laboratoriya Znanii, Moscow, 2020).

    Google Scholar 

  24. B. A. Budak, “Shooting method for solving equilibrium programming problems,” Comput. Math. Math. Phys. 53, 1819–1824 (2013). https://doi.org/10.1134/s0965542513120038

    Article  MathSciNet  Google Scholar 

  25. L. A. Lyusternik and V. I. Sobolev, Elements of the Functional Analysis (Nauka, Moscow, 1965).

    Google Scholar 

  26. V. V. Stepanov, Course of the Differential Equations (GIFML, Moscow, 1958).

    Google Scholar 

Download references

Funding

The study was supported by the Russian Science Foundation, project no. 23-21-00027, https://rscf.ru/project/23-21-00027/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. Abbasov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbasov, M.E., Sharlay, A.S. Variational Approach for Finding the Cost-Optimal Trajectory. Math Models Comput Simul 16, 293–301 (2024). https://doi.org/10.1134/S2070048224020030

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070048224020030

Keywords:

Navigation