Log in

Reconstruction of Environmental Conditions in the Eastern Part of Primorsky Krai (Russian Far East) in the Late Holocene

  • Published:
Contemporary Problems of Ecology Aims and scope

Abstract

This paper examines a 115 cm long profile section of lacustrine-swamp sediments from the Langou I Bay (eastern part of Primorsky Krai; 44°25′10.16″ N, 135°54′26.08″ E). According to the produced age model, the sediments are 3900 years old. A multiproxy study involving geochemical, chironomid, diatom, and palynological analysis indicates that the climatic and environmental conditions on the seacoast in the eastern part of Primorsky Krai developed in many respects synchronously with known climatic phases of the Late Holocene. The period from ca. 4200 to 2600 cal years BP corresponds to the first and second warm stages of the Jōmon period and the late Jōmon transgression in Japan. The peak of summer temperatures in the vicinity of the Langou I Bay occurred between 2900 and 2600 cal years BP. The cooling that began after 2600 cal years BP was not as severe in the study area as in Japan (cold Jōmon and Kofun stages): the reconstructed temperatures were 1°C lower than now; in Japan, they were 2–3°C below the current level. The Medieval Climate Optimum (Nara–Heian–Kamakura stage in Japan) reconstructed for the eastern part of Primorsky Krai in the period from 1250 to 750 cal years BP featured a humid climate with summer temperatures ca. 1.5°C higher than at present. The period between 750 and 250 cal years BP correlates with the Little Ice Age: summer temperatures had dropped to 1.5–2°C below the modern one. In the last 200 years, the lake has been shallowing and has nearly dried out. This period is marked by temperature fluctuations amid the trend of climate warming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Atlas lesov Primorskogo kraya (Atlas of Forests of Prymorsky Krai), Vladivostok: Dal’nevost. Otd. Ross. Akad. Nauk, 2005.

  2. Barinova, S.S., Medvedeva, L.A., and Anissimova, O.V., Diversity of Algal Indicators in Environmental Assessment, Tel Aviv: Pilies Studio, 2006.

    Google Scholar 

  3. Battarbee, R.W., Diatom analysis, in Handbook of Holocene Paleoecology and Paleohydrology, London: Wiley & Sons, 1986, pp. 527–570.

    Google Scholar 

  4. Bazarova, V.B., Grebennikova, T.A., and Orlova, L.A., Natural-environment dynamics within the Amur Basin during the neoglacial, Geogr. Nat. Res., 2014, vol. 35, no. 3, pp. 275–283.

    Article  Google Scholar 

  5. Blaauw, M. and Christen, J.A., Flexible paleoclimate age-depth models using an autoregressive gamma process, Bayesian Anal., 2011, vol. 6, pp. 457–474.

    Article  Google Scholar 

  6. Brooks, S.J., Langdon, P.G., and Heiri, O., The Identification and Use of Palaearctic Chironomidae Larvae in Palaeoecology, London: Quat. Res. Assoc., 2007.

    Google Scholar 

  7. Brooks, S.J., Diekmann, B., Jones, V.J., and Hammarlund, D., Holocene environmental change in Kamchatka: A synopsis, Global Planet. Change, 2015, vol. 134, pp. 166–174.

    Article  Google Scholar 

  8. Demezhko, D.Y. and Solomina, O.N., Ground surface temperature variations on Kunashir island in the last 400 years inferred from borehole temperature data and tree-ring records, Dokl. Earth Sci., 2009, vol. 426, no. 1, pp. 628–631.

    Article  CAS  Google Scholar 

  9. Diatomovye vodorosli SSSR: (Iskopaemye i sovremennye) (Fossil and Modern Diatom Algae of the USSR), Leningrad: Nauka, 1974, vol. 1.

  10. Druzhinina, O., Kublitskii, J., Nazarova, L., Subetto, D., Syrykh, L., Arslanov, Kh., Stančikaitė, M., Vaikutiene, G., and Kul`kova, M., Palaeoenvironmental conditions in South-Eastern part of the Baltic region during the Late Pleistocene–Holocene transition (Kaliningrad District, Russia), Boreas, 2020, vol. 49, no. 3, pp. 544–561.

    Article  Google Scholar 

  11. Frolova, L.A., Nazarova, L.B., Pestryakova, L.A., and Herzschuh, U., Analysis of the effects of climate-dependent factors on the formation of zooplankton communities that inhabit arctic lakes in the Anabar River Basin, Contemp. Probl. Ecol., 2013, vol. 6, no. 1, pp. 1–11.

    Article  Google Scholar 

  12. Ganzey, L.A., Razjigaeva, N.G., Nishimura, Yu., Grebennikova, T.A., Kaistrenko, V.M., Gorbunov, A.O., Arslanov, Kh.A., Chernov, S.B., and Naumov, Yu.A., Deposits of historical and paleotsunamis on the coast of Eastern Primorye, Russ. J. Pac. Geol., 2015, vol. 9, no. 1, pp. 64–79.

    Article  Google Scholar 

  13. Heusser, C.J. and Igarashi, Y., Quaternary migration pattern of Selaginella selaginoides in the North Pacific, Arct. Alp. Res., 1994, vol. 26, no. 2, pp. 187–192.

    Article  Google Scholar 

  14. Hill, M.O., Diversity and evenness: A unifying notation and its consequence, Ecology, 1973, vol. 54, pp. 427–432.

    Article  Google Scholar 

  15. Hoff, U., Biskaborn, B.K., Dirksen, V., Dirksen, O., Kuhn, G., Meyer, H., Nazarova, L., Roth, A., and Diekmann, B., Holocene environment of Central Kamchatka, Russia: Implications from a multi-proxy record of Two-Yurts Lake, Global Planet. Change, 2015, vol. 134, pp. 101–117.

    Article  Google Scholar 

  16. Juggins, S., Software for Ecological and Palaeoecological Data Analysis and Visualization. C2 Version 1.5 User Guide, Newcastle: Newcastle Univ., 2007.

    Google Scholar 

  17. Kaufman, D., McKay, N., Routson, C., Erb, M., Davis, B., Heiri, O., Jaccard, S., Tierney, J., Dätwyler, C., et al., A global database of Holocene paleo-temperature record, Sci. Data, 2020, vol. 7, p. 115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kawahata, H., Ohshima, H., Shimada, C., and Oba, T., Terrestrial–oceanic environmental change in the southern Okhotsk Sea during the Holocene, Quat. Int., 2003, vol. 108, pp. 67–76.

    Article  Google Scholar 

  19. Kitagawa, H. and Matsumoto, E., Climatic implications of δ13C variations in a Japanese cedar (Cryptomeria japonica) during the last two millennia, Geophys. Res. Lett., 1995, vol. 22, no. 16, pp. 2155–2158.

    Article  CAS  Google Scholar 

  20. Kohfeld, K.E. and Harrison, S.P., How well can we simulate past climates? Evaluating the models using global palaeoenvironmental datasets, Quat. Sci. Rev., 2000, vol. 19, no. 1, pp. 321–346.

    Article  Google Scholar 

  21. Koizumi, I., Spectral analysis of the diatom paleotemperature records at DSDP Sites 579 and 580 near the subarctic front in the western North Pacific, Palaeogeogr. Palaeoclim. Palaeoecol., 1994, vol. 108, pp. 475–485.

    Article  Google Scholar 

  22. Korotkii, A.M., Grebennikova, T.A., Pushkar’, V.S., Razzhigaeva, N.G., Volkov, V.G., Ganzei, L.A., Mokhova, L.M., Bazarova, V.B., and Makarova, T.R., Climatic changes in the South of the Far East in the Late Pleistocene–Holocene, Vestn. Dal’nevost. Otd. Ross. Akad. Nauk, 1997, no. 3, pp. 121–143.

  23. Krammer, K. and Lange-Bertalot, H., Bacillariophyceae, vol. 1: Naviculaceae, Jena: VEB Gustav Fischer Verlag, 1986.

    Google Scholar 

  24. Krammer, K. and Lange-Bertalot, H., Bacillariophyceae, vol. 2: Bacillariaceae, Epithemiaceae, Surirellaceae, Jena: VEB Gustav Fischer Verlag, 1988.

    Google Scholar 

  25. Krammer, K. and Lange-Bertalot, H., Bacillariophyceae, vol. 3: Centrales, Fragilariaceae, Eunotiaceae, Jena: VEB Gustav Fischer Verlag, 1991a.

    Google Scholar 

  26. Krammer, K. and Lange-Bertalot, H., Bacillariophyceae, vol. 4: Achnanthaceae. Kritische Erganzungen zu Navicula (Lineolatae) und Gomphonema, Jena: VEB Gustav Fischer Verlag, 1991b.

    Google Scholar 

  27. Meyer, H., Chapligin, B., Hoff, U., Nazarova, L., and Diekmann, B., Oxygen isotope composition of diatoms as Late Holocene climate proxy at Two-Yurts-Lake, Central Kamchatka, Russia, Global Planet. Change, 2015, vol. 134, pp. 118–128.

    Article  Google Scholar 

  28. Nazarova, L., Pestryakova, L.A., Ushnickaja, L.A., and Hubberten, H.-W., Chironomids (Diptera: Chironomidae) of Central Yakutian lakes and their indicative potential for palaeoclimatic investigations, Contemp. Probl. Ecol., 2008, vol. 1, no. 3, pp. 335–345.

    Article  Google Scholar 

  29. Nazarova, L., Herzschuh, U., Wetterich, S., Kumke, Th., and Pestjakova, L., Chironomid-based inference models for estimating mean July air temperature and water depth from lakes in Yakutia, northeastern Russia, J. Palaeolimnol., 2011, vol. 45, pp. 57–71.

    Article  Google Scholar 

  30. Nazarova, L., de Hoog, V., Hoff, U., and Diekmann, B., Late Holocene climate and environmental changes in Kamchatka inferred from subfossil chironomid record, Quat. Sci. Rev., 2013, vol. 67, pp. 81–92.

    Article  Google Scholar 

  31. Nazarova, L., Self, A., Brooks, S.J., van Hardenbroek, M., Herzschuh, U., and Diekmann, B., Northern Russian chironomid-based modern summer temperature data set and inference models, Global Planet. Change, 2015, vol. 134, pp. 10–25.

    Article  Google Scholar 

  32. Nazarova, L.B., Self, A.E., Brooks, S.J., Solovieva, N., Syrykh, L.S., and Dauvalter, V.A., Chironomid fauna of the lakes from the Pechora river basin (east of European part of Russian Arctic): Ecology and reconstruction of recent ecological changes in the region, Contemp. Probl. Ecol., 2017a, vol. 10, no. 4, pp. 350–362.

    Article  Google Scholar 

  33. Nazarova, L., Bleibtreu, A., Hoff, U., Dirksen, V., and Diekmann, B., Changes in temperature and water depth of a small mountain lake during the past 3000 years in Central Kamchatka reflected by chironomid record, Quat. Int., 2017b, vol. 447, pp. 46–58.

    Article  Google Scholar 

  34. Pokrovskaya, I.M., Methods of paper works, in Paleopalinologiya (Paleopalinology), Leningrad: Nedra, 1966, vol. 1, pp. 32–61.

    Google Scholar 

  35. R Core Team, R: A Language and Environment for Statistical Computing, Vienna: R Foundation for Statistical Computing, 2012.

    Google Scholar 

  36. Razjigaeva, N.G., Ganzey, L.A., Grebennikova, T.A., Belyanina, N.I., Mokhova, L.M., Arslanov, Kh.A., and Chernov, S.B., Holocene climatic changes and vegetation development in the Kuril Islands, Quat. Int., 2013, vol. 290–291, pp. 126–138.

    Article  Google Scholar 

  37. Razjigaeva, N.G., Ganzey, L.A., Grebennikova, T.A., Mokhova, L.M., Kudryavtseva, E.P., Arslanov, Kh.A., Maksimov, F.E., and Starikova, A.A., Landscape and environmental changes of Eastern Primorye coast at middle-late Holocene: Climatic changes and human impact effects, J. Asian Earth Sci., 2018, vol. 158, pp. 160–172.

    Article  Google Scholar 

  38. Razjigaeva, N.G., Ganzey, L.A., Lyaschevskaya, M.S., Makarova, T.R., Kudryavtseva, E.P., Grebennikova, T.A., Panichev, A.M., Arslanov, Kh.A., Maksimov, F.E., Petrov, A.Yu., and Malkov, S.S., Climatic and human impacts on landscape development of the Murav’ev Amursky Peninsula (Russian South Far East) in the Middle/Late Holocene and historical time, Quat. Int., 2019, vol. 516, pp. 127–140.

    Article  Google Scholar 

  39. Razzhigaeva, N.G., Ganzey, L.A., Grebbennikova, T.A., Kopoteva, T.A., Mokhova, L.M., Panichev, A.M., Kudryavtseva, E.P., Arslanov, Kh.A., Maksimov, F.E., Petrov, A.Yu., and Klimin, M.A., Environmental changes recorded in deposits of the Izyubrinye Solontsi Lake, Sikhote-Alin, Contemp. Probl. Ecol., 2017, vol. 10, no. 4, pp. 441–453.

    Article  Google Scholar 

  40. Razzhigaeva, N.G., Ganzey, L.A., Makarova, T.R., Kornyushenko, T.V., Ganzei, K.S., Sudin, V.V., and Kharlamov, A.A., Paleolake of Shkot Island (Peter the Great Gulf): Natural archives of climatic and landscape vegetation, Geosyst. Transition Zones, 2020, vol. 4, no. 2, pp. 230–249.

    Article  Google Scholar 

  41. Rudaya, N., Nazarova, L., Novenko, E., Andreev, A., Kalugin, I., Daryin, A., Babich, V., Li, H.-Ch., and Shilov, P., Mid Holocene climate and vegetation in the Northern Altay mountains recorded in Lake Teletskoe, Global Planet. Change, 2016, vol. 141, pp. 12–24.

    Article  Google Scholar 

  42. Sakaguchi, Y., Warm and cold stages in the past 7600 years in Japan and their global correlation, Bull. Dept. Geogr. Univ. Tokyo, 1983, vol. 15, pp. 1–31.

    Google Scholar 

  43. Smol, J.P., Pollution of Lakes and Rivers: A Paleoenvironmental Perspective, New York: Arnold Publ., 2002.

    Google Scholar 

  44. Solovieva, N., Klimaschewski, A., Self, A.E., Jones, V.J., Andrén, E., Andreev, A.A., Hammarlund, D., Lepskaya, E.V., and Nazarova, L., Holocene environmental history of a small coastal lake from north-eastern Kamchatka Peninsula, Global Planet. Change, 2015, vol. 134, pp. 55–66.

    Article  Google Scholar 

  45. Subetto, D.A., Nazarova, L.B., Pestryakova, L.A., Syrykh, L.S., Andronikov, A.V., Biskaborn, B., Diekmann, B., Kuznetsov, D.D., Sapelko, T.V., and Grekov, I.M., Palaeolimnological studies in Russian Northern Eurasia: A review, Contemp. Probl. Ecol., 2017, no. 4, pp. 327–335.

  46. Syrykh, L.S., Nazarova, L.B., Herzschuh, U., Subetto, D.A., and Grekov, I.M., Reconstruction of palaeoecological and palaeoclimatic conditions of the Holocene in the south of Taimyr according to the analysis of lake sediments, Contemp. Probl. Ecol., 2017, no. 4, pp. 363–369.

  47. Taira, K., Environmental changes in eastern Asia during the past 2000 years. volcanism, tectonism, climate and palaeooceanology, Palaeogeogr. Palaeoclimatol. Palaeoecol., 1980, vol. 32, pp. 89–97.

    Article  Google Scholar 

  48. ter Braak, C.J.F. and Prentice, I.C., A theory of gradient analysis, Adv. Ecol. Res., 1988, vol. 18, pp. 271–317.

    Article  Google Scholar 

  49. Wiederholm, T., Chironomidae of the Holarctic Region, Part 1: Larvae, Lund: Entomological Society of Lund, 1983, suppl. 19.

  50. Yasuda, Y., Climatic changes and the development of Jomon Culture in Japan, in Nature and Humankind in the Age of Environmental Crisis, Proc. of the VI Int. Symp. at the Int. Res. Centre for Japanese Studies, 1995, pp. 57–77.

  51. Zhilich, S., Rudaya, N., Krivonogov, S., Nazarova, L., and Pozdnyakov, D., Environmental dynamics of the Baraba forest-steppe over the last 8000 years and their impact on the types of economic life of the population, Quat. Sci. Rev., 2017, vol. 163, pp. 152–161.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to participants of expeditions to the study area and to N.P. Domra of the Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far East Branch, Russian Academy of Sciences, for preparing specimens for the spore–pollen analysis.

Funding

This study was supported by the German Research Foundation (Deutscheforschungsgemeinschaft, DFG), project no. NA 760/5-1, and performed as part of the state assignment of the Pacific Geographical Institute, Far East Branch, Russian Academy of Sciences, theme no. AAAA-A19-119030790003-1. The production of the databases used in this study was supported by the Russian Science Foundation, project no. 20-17-00135.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. B. Nazarova.

Ethics declarations

The authors declare that they have no conflicts of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by L. Emeliyanov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazarova, L.B., Razjigaeva, N.G., Golovatyuk, L.V. et al. Reconstruction of Environmental Conditions in the Eastern Part of Primorsky Krai (Russian Far East) in the Late Holocene. Contemp. Probl. Ecol. 14, 218–230 (2021). https://doi.org/10.1134/S1995425521030094

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995425521030094

Keywords:

Navigation