Log in

On Methodology for Solving Control Problems of One Class of Time-varying Systems

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

A rigorous analytical approach to the analysis and synthesis of one class of the linear time-varying systems has been developed. it consists of constructively reducing these systems to time-invariant systems of a higher dimension than the original system. The application of this approach is illustrated by the example of the problem of stabilizing the cylindrical precession of a satellite using magnetic moments

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

REFERENCES

  1. V. I. Kalenova and V. M. Morozov, Linear Nonstationary Systems and their Applications to Problems of Mechanics (Fizmatlit, Moscow, 2010) [in Russian].

    Google Scholar 

  2. V. I. Kalenova and V. M. Morozov, ‘‘Reducibility of the second order time-varying systems with control and observation,’’ J. Appl. Math. Mech. 76, 413–422 (2012).

    Article  MathSciNet  Google Scholar 

  3. V. M. Morozov amd V. I. Kalenova, ‘‘Satellite control using magnetic moments: Controllability and stabilization algorithms,’’ Cosmic Res. 58, 158–166 (2020).

  4. V. I. Kalenova and V. M. Morozov, ‘‘Novel approach to attitude stabilization of satellite using geomagnetic Lorentz forces,’’ Aerospace. Sci. Technol. 106, 106105 (2020). https://doi.org/10.1016/j.ast.2020.106105

  5. V. M. Morozov, V. I. Kalenova, and M. G. Rak, ‘‘On the stabilization of the regular precessions of satellites by means of magnetic moments,’’ Mech. Solids 56, 1486–1499 (2021).

    Article  ADS  Google Scholar 

  6. V. M. Morozov, V. I. Kalenova, and M. G. Rak, “Stabilization of steady-state motions of a satellite near the center of mass in the geomagnetic field, Parts I–V,” Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh. Temat. Obzor 220, 71–85 (2023);

    Google Scholar 

  7. Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh. Temat. Obzor 221, 71–92 (2023);

    Google Scholar 

  8. Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh. Temat. Obzor 222, 42–63 (2023);

    Google Scholar 

  9. Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh. Temat. Obzor 223, 84–106 (2023);

    Google Scholar 

  10. V. M. Morozov, V. I. Kalenova, and M. G. Rak, ‘‘Stabilization of steady-state motions of a satellite near the center of mass in the geomagnetic field, Parts I–V,’’ Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh. Temat. Obzor 220, 71–85 (2023); Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh. Temat. Obzor 221, 71–92 (2023); Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh. Temat. Obzor 222, 42–63 (2023); Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh. Temat. Obzor 223, 84–106 (2023); Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh. Temat. Obzor 224, 115–124 (2023).

    Google Scholar 

  11. A. M. Lyapunov, The General Problem of the Stability of Motion (Gostekhizdat, Moscow, 1950) [in Russian].

    Google Scholar 

  12. J. W. Brewer, ‘‘Kronecker products and matrix calculus in system theory,’’ IEEE Trans. Circuits Syst. 25, 772–781 (1978).

    Article  MathSciNet  Google Scholar 

  13. R. E. Kalman, Lecture on Controllability and Observability (C.I. M. E. Bologna, Italy, 1969), pp. 1–149.

    Google Scholar 

  14. V. V. Rumyantsev, On Stability od Steady-State Motions of Satellites (Vychisl. Tsentr AN SSSR, Moscow, 1967) [in Russian].

    Google Scholar 

  15. M. Yu. Ovchinnikov and D. S. Roldugin, ‘‘A survey on active magnetic attitude control algorithms for small satellites,’’ Prog. Aerospace Sci. (2019).

  16. P. W. Likins, ‘‘Stability of a symmetrical satellite in attitudes fixed in an orbiting reference frame,’’ J. Astronaut. Sci. 12, 18–24 (1965).

    Google Scholar 

  17. V. V. Beletsky, Motion of an Artificial Satellite about its Center of Mass in Gravitational Field (Mosk. Gos. Univ., Moscow, 1975) [in Russian].

    Google Scholar 

  18. A. Yu. Aleksandrov and A. A. Tikhonov, ‘‘Averaging technique in the problem of Lorentz attitude stabilization of an Earth-pointing satellite,’’ Aerospace Sci. Technol. 104 (3), 1–12 (2020).

    Article  Google Scholar 

  19. https://www.ngdc.noaa.gov/IAGA/vmod/igrf.html.

  20. J. Wertz, Spacecraft Attitude Determination and Control (D. Reidel, Dordrecht, The Netherlands, 1978).

    Book  Google Scholar 

  21. Y. Yang, ‘‘Controllability of spacecraft using only magnetic torques,’’ IEEE Trans. Aerospace Electron. Syst. 52, 955–962 (2016).

    Article  ADS  Google Scholar 

  22. Ya. N. Roitenberg, Automatic Control (Nauka, Moscow, 1978) [in Russian].

    Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. I. Kalenova or V. M. Morozov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

(Submitted by A. M. Elizarov)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalenova, V.I., Morozov, V.M. & Rak, M.G. On Methodology for Solving Control Problems of One Class of Time-varying Systems. Lobachevskii J Math 44, 4994–5000 (2023). https://doi.org/10.1134/S1995080223110197

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080223110197

Keywords:

Navigation