Log in

Equilibrium Problem for an Inhomogeneous Kirchhoff–Love Plate Contacting with a Partially Delaminated Inclusion

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

A new mathematical model describing an equilibrium of an elastic Kirchhoff-Love plate is proposed. We suppose that the plate may come into contact on the side edge with a rigid obstacle. On a given part of the closed curve corresponding to the plate side edge we impose clam** conditions and on the rest part of the curve we consider a nonpenetration condition of the Signorini type. The rigid obstacle is defined by cylindrical surface with generators normal to the plate midplane. In addition, the plate has a flat rigid inclusion (stiffener) on the side edge. The inclusion also defined by a cylindrical surface. The peculiarity of the problem is related to the partial delamination of the inclusion on the contact surface. Boundary conditions of an inequality type ensure nonpenetration of the plate points and the obstacle as well as for points of an elastic matrix and inclusion points. Solvability of the problem is proved. Under the assumption that the solution of the variational problem is smooth enough, optimality conditions on the contact boundary are found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

REFERENCES

  1. N. Kikuchi and J. T. Oden, Contact Problems in Elasticity: Study of Variational Inequalities and Finite Element Methods (SIAM, Philadelphia, 1988).

    Book  Google Scholar 

  2. L.-E. Andersson and A. Klarbring, ‘‘A review of the theory of elastic and quasistatic contact problems in elasticity,’’ Phil. Trans. R. Soc. London, Ser. A 359, 2519–2539 (2001).

    Article  Google Scholar 

  3. A. Rademacher and K. Rosin, ‘‘Adaptive optimal control of Signorini’s problem,’’ Comput. Optim. Appl. 70, 531–569 (2018).

    Article  MathSciNet  Google Scholar 

  4. R. V. Namm and G. I. Tsoi, ‘‘Solution of a contact elasticity problem with a rigid inclusion,’’ Comput. Math. Math. Phys. 59, 659–666 (2019).

    Article  MathSciNet  Google Scholar 

  5. G. Fichera, Existence Theorems in Elasticity, in Handbuch der Physik, Ed. by C. Truesdell (Springer, Berlin, 1972), Vol. VIa/2.

  6. V. A. Kovtunenko, ‘‘Quasi-variational inequality for the nonlinear indentation problem: A power-law hardening model,’’ Phil. Trans. R. Soc. London, Ser. A 380 (2236), 20210362 (2022).

  7. A. M. Khludnev, ‘‘Optimal control of a plate over an obstacle,’’ Sib. Math. J. 31, 146–152 (1990).

    Article  MathSciNet  Google Scholar 

  8. E. M. Rudoi and E. M. Khludnev, ‘‘Unilateral contact of a plate with a thin elastic obstacle,’’ J. Appl. Ind. Math. 4, 389–398 (2010).

    Article  MathSciNet  Google Scholar 

  9. A. I. Furtsev, ‘‘On contact of thin obstacle and plate, containing thin inclusion,’’ Sib. J. Pure Appl. Math. 17 (4), 94–111 (2017).

    MathSciNet  Google Scholar 

  10. A. I. Furtsev, ‘‘A contact problem for a plate and a beam in presence of adhesion,’’ J. Appl. Ind. Math. 13, 208–218 (2019).

    Article  MathSciNet  Google Scholar 

  11. E. V. Pyatkina, ‘‘A contact problem for two plates of the same shape glued along one edge of a crack,’’ J. Appl. Ind. Math. 12, 334–346 (2018).

    Article  MathSciNet  Google Scholar 

  12. A. M. Khludnev, K. H. Hoffmann, and N. D. Botkin, ‘‘The variational contact problem for elastic objects of different dimensions,’’ Sib. Math. J. 47, 584–593 (2006).

    Article  Google Scholar 

  13. N. P. Lazarev, G. M. Semenova, and E. D. Fedotov, ‘‘An equilibrium problem for a Kirchhoff–Love plate, contacting an obstacle by top and bottom edges,’’ Lobachevskii J. Math. 44, 614–619 (2023).

    Article  MathSciNet  Google Scholar 

  14. N. A. Nikolaeva, ‘‘Method of fictitious domains for Signorini’s problem in Kirchhoff–Love theory of plates,’’ J. Math. Sci. 221, 872–882 (2017).

    Article  MathSciNet  Google Scholar 

  15. N. P. Lazarev, V. V. Everstov, and N. A. Romanova, ‘‘Fictitious domain method for equilibrium problems of the Kirchhoff–Love plates with nonpenetration conditions for known configurations of plate edges,’’ J. Sib. Fed. Univ. Math. Phys. 12, 674–686 (2019).

    Article  Google Scholar 

  16. A. Khludnev and A. Rodionov, ‘‘Elasticity tensor identification in elastic body with thin inclusions: Non-coercive case,’’ J. Optim. Theory Appl. 197, 993–1010 (2023).

    Article  MathSciNet  Google Scholar 

  17. T. Kashiwabara and H. Itou, ‘‘Unique solvability of a crack problem with Signorini-type and Tresca friction conditions in a linearized elastodynamic body,’’ Phil. Trans. R. Soc. London, Ser. A 380 (2236), 20220225 (2022).

  18. D. Knees, A. Schröder, and V. Shcherbakov, ‘‘Fully discrete approximation schemes for rate-independent crack evolution,’’ Phil. Trans. R. Soc. A 380 (2236), 20210361 (2022).

  19. D. Knees and A. Schröder, ‘‘Global spatial regularity for elasticity models with cracks, contact and other nonsmooth constraints,’’ Math. Methods Appl. Sci. 35, 1859–1884 (2012).

    Article  MathSciNet  Google Scholar 

  20. V. A. Kovtunenko, and K. Kunisch, ‘‘Shape derivative for penalty-constrained nonsmooth-nonconvex optimization: Cohesive crack problem,’’ J. Optim. Theory Appl. 194, 597–635 (2022).

    Article  MathSciNet  Google Scholar 

  21. A. M. Khludnev, ‘‘Non-coercive problems for Kirchhoff–Love plates with thin rigid inclusion,’’ Z. Angew. Math. Phys. 73 (2), 54 (2022).

    Article  MathSciNet  Google Scholar 

  22. N. P. Lazarev and V. A. Kovtunenko, ‘‘Signorini-type problems over non-convex sets for composite bodies contacting by sharp edges of rigid inclusions,’’ Mathematics 10, 250 (2022).

    Article  Google Scholar 

  23. N. P. Lazarev and E. D. Fedotov, ‘‘Three-dimensional Signorini-type problem for composite bodies contacting with sharp edges of rigid inclusions,’’ Chelyab. Fiz.-Mat. Zh. 7, 412–423 (2022).

    MathSciNet  Google Scholar 

  24. N. P. Lazarev and E. M. Rudoy, ‘‘Optimal size of a rigid thin stiffener reinforcing an elastic plate on the outer edge,’’ Z. Angew. Math. Mech. 97, 1120–1127 (2017).

    Article  MathSciNet  Google Scholar 

  25. A. M. Khludnev and V. A. Kovtunenko, Analysis of Cracks in Solids (WIT-Press, Southampton, 2000).

    Google Scholar 

  26. V. V. Shcherbakov, ‘‘Existence of an optimal shape of the thin rigid inclusions in the Kirchhoff–Love plate,’’ J. Appl. Ind. Math. 3, 97–105 (2014).

    Article  MathSciNet  Google Scholar 

  27. A. M. Khludnev, ‘‘Shape control of thin rigid inclusions and cracks in elastic bodies,’’ Arch. Appl. Mech. 83, 1493–1509 (2013).

    Article  Google Scholar 

  28. A. M. Khludnev, ‘‘On bending an elastic plate with a delaminated thin rigid inclusion,’’ J. Appl. Indust. Math. 5, 582–594 (2011).

    Article  MathSciNet  Google Scholar 

  29. N. Lazarev, ‘‘Existence of an optimal size of a delaminated rigid inclusion embedded in the Kirchhoff–Love plate,’’ Bound Value Probl. 2015, 180 (2015).

    Article  MathSciNet  Google Scholar 

  30. N. P. Lazarev, G. M. Semenova, and N. A. Romanova, ‘‘On a limiting passage as the thickness of a rigid inclusions in an equilibrium problem for a Kirchhoff–Love plate with a crack,’’ J. Sib. Fed. Univ. Math. Phys. 14, 28–41 (2021).

    Article  MathSciNet  Google Scholar 

  31. C. Baiocchi and A. Capelo, Variational and Quasivariational Inequalities. Applications to Free Boundary Problems (Wiley, Chichester, 1984).

    Google Scholar 

  32. A. M. Khludnev, Elasticity Problems in Nonsmooth Domains (Fizmatlit, Moscow, 2010) [in Russian].

    Google Scholar 

  33. V. Shcherbakov, ‘‘Shape optimization of rigid inclusions for elastic plates with cracks,’’ Z. Angew. Math. Phys. 67, 71 (2016).

    Article  MathSciNet  Google Scholar 

Download references

Funding

The work is supported by the Ministry of science and higher education of the Russian Federation, agreement no. 075-02-2023-947, February 16, 2023.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. P. Lazarev, E. F. Sharin or E. S. Efimova.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

(Submitted by A. M. Elizarov)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lazarev, N.P., Sharin, E.F. & Efimova, E.S. Equilibrium Problem for an Inhomogeneous Kirchhoff–Love Plate Contacting with a Partially Delaminated Inclusion. Lobachevskii J Math 44, 4127–4134 (2023). https://doi.org/10.1134/S1995080223100268

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080223100268

Keywords:

Navigation