Log in

An Equilibrium Problem for a Kirchhoff–Love Plate, Contacting an Obstacle by Top and Bottom Edges

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

A new model describing the equilibrium of a Kirchhoff–Love plate which may come into mechanical contact with a rigid non-deformable obstacle is proposed. Unlike previous works, we consider the case when a contact is possible on curves located at the intersection of the side face of the plate and two obstacle surfaces that bound the plate from above and below. A boundary condition of Signorini’s type is imposed in the form of two inequalities restricting plate displacements. An equilibrium problem describing the contact of the plate with the rigid obstacle is formulated as a minimization problem for an energy functional over a suitable convex and closed set of admissible displacements. It is proved that the problem has a unique solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2

REFERENCES

  1. N. Kikuchi and J. T. Oden, Contact Problems in Elasticity: Study of Variational Inequalities and Finite Element Methods (SIAM, Philadelphia, 1988).

    Book  MATH  Google Scholar 

  2. L.-E. Andersson and A. Klarbring, ‘‘A review of the theory of elastic and quasistatic contact problems in elasticity,’’ Phil. Trans. R. Soc. A 359, 2519–2539 (2001).

    Article  MATH  Google Scholar 

  3. A. Rademacher and K. Rosin, ‘‘Adaptive optimal control of Signorini’s problem,’’ Comput. Optim. Appl. 70, 531–569 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  4. A. Bermúdez and C. Saguez, ‘‘Optimal control of a Signorini problem,’’ SIAM J. Control Optim. 25, 576–582 (1987).

  5. A. M. Khludnev, ‘‘Optimal control of a plate over an obstacle,’’ Sib. Math. J. 31, 146–152 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  6. E. M. Rudoi and E. M. Khludnev, ‘‘Unilateral contact of a plate with a thin elastic obstacle,’’ J. Appl. Ind. Math. 4, 389–398 (2010).

    Article  MathSciNet  Google Scholar 

  7. A. I. Furtsev, ‘‘On contact of thin obstacle and plate, containing thin inclusion,’’ Sib. J. Pure Appl. Math. 17 (4), 94–111 (2017).

    MathSciNet  MATH  Google Scholar 

  8. E. V. Pyatkina, ‘‘A contact problem for two plates of the same shape glued along one edge of a crack,’’ J. Appl. Ind. Math. 12, 334–346 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  9. A. M. Khludnev, K. H. Hoffmann, and N. D. Botkin, ‘‘The variational contact problem for elastic objects of different dimensions,’’ Sib. Math. J. 47, 584–593 (2006).

    Article  MATH  Google Scholar 

  10. N. A. Nikolaeva, ‘‘Method of fictitious domains for Signorini’s problem in Kirchhoff–Love theory of plates,’’ J. Math. Sci. 221, 872–882 (2017).

    Article  MathSciNet  Google Scholar 

  11. A. I. Furtsev, ‘‘The unilateral contact problem for a Timoshenko plate and a thin elastic obstacle,’’ Sib. Electron. Math. Rep. 17, 364–379 (2020).

    MathSciNet  MATH  Google Scholar 

  12. N. P. Lazarev, ‘‘Fictitious domain method in the equilibrium problem for a Timoshenko-type plate contacting with a rigid obstacle,’’ J. Math. Sci. 203, 527–539 (2014).

    Article  MathSciNet  Google Scholar 

  13. N. P. Lazarev, E. F. Sharin, and G. M. Semenova, ‘‘Optimal control of the location of the hinge point of rigid inclusions in an equilibrium problem of a Timoshenko plate,’’ Chelyab. Phys. Math. J. 6, 278–288 (2021).

    MathSciNet  MATH  Google Scholar 

  14. N. P. Lazarev, V. V. Everstov, and N. A. Romanova, ‘‘Fictitious domain method for equilibrium problems of the Kirchhoff–Love plates with nonpenetration conditions for known configurations of plate edges,’’ J. Sib. Fed. Univ., Math. Phys. 12, 674–686 (2019).

    MATH  Google Scholar 

  15. A. Furtsev, H. Itou, and E. Rudoy, ‘‘Modeling of bonded elastic structures by a variational method: Theoretical analysis and numerical simulation,’’ Int. J. Solids Struct. 182–183, 100–111 (2020).

    Article  Google Scholar 

  16. A. I. Furtsev, ‘‘Energy derivative for a construction consisting of a Timoshenko plate and a thin beam,’’ Math. Notes NEFU 28 (2), 68–87 (2021).

    Google Scholar 

  17. E. M. Rudoy and V. V. Shcherbakov, ‘‘Domain decomposition method for a membrane with a delaminated thin rigid inclusion,’’ Sib. Electron. Math. Rep. 13, 395–410 (2016).

    MathSciNet  MATH  Google Scholar 

  18. D. Knees and A. Schröder, ‘‘Global spatial regularity for elasticity models with cracks, contact and other nonsmooth constraints,’’ Math. Methods Appl. Sci. 35, 1859–1884 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  19. V. A. Kovtunenko and K. Kunisch, ‘‘Shape derivative for penalty-constrained nonsmooth-nonconvex optimization: Cohesive crack problem,’’ J. Optim. Theory Appl. 194, 597–635 (2022).

    Article  MathSciNet  MATH  Google Scholar 

  20. A. M. Khludnev, ‘‘Non-coercive problems for Kirchhoff–Love plates with thin rigid inclusion,’’ Zeitschr. Angew. Math. Phys. 73 (2), 54 (2022).

    Article  MathSciNet  MATH  Google Scholar 

  21. A. M. Khludnev, ‘‘Junction problem for thin elastic and volume rigid inclusions in elastic body,’’ Phil. Trans. R. Soc. London, Ser. A 380 (2236), 20210360 (2022).

    MathSciNet  Google Scholar 

  22. D. Knees, A. Schröder, and V. Shcherbakov, ‘‘Fully discrete approximation schemes for rate-independent crack evolution,’’ Phil. Trans. R. Soc. London, Ser. A 380 (2236), 20210361 (2022).

    MathSciNet  Google Scholar 

  23. N. P. Lazarev and G. M. Semenova, ‘‘Equilibrium problem for a Timoshenko plate with a geometrically nonlinear condition of nonpenetration for a vertical crack,’’ J. Appl. Ind. Math. 14, 532–540 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  24. H. Itou, V. A. Kovtunenko and K. R. Rajagopal, ‘‘Nonlinear elasticity with limiting small strain for cracks subject to non-penetration,’’ Math. Mech. Solids 22, 1334–1346 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  25. H. Itou, V. A. Kovtunenko, and K. R. Rajagopal, ‘‘Well-posedness of the problem of non-penetrating cracks in elastic bodies whose material moduli depend on the mean normal stress,’’ Int. J. Eng. Sci. 136, 17–25 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  26. A. Khludnev, ‘‘T-shape inclusion in elastic body with a damage parameter,’’ J. Comput. Appl. Math. 393, 113540 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  27. A. Khludnev and I. Fankina, ‘‘Equilibrium problem for elastic plate with thin rigid inclusion crossing an external boundary,’’ Zeitschr. Angew. Math. Phys. 72, 121 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  28. V. Shcherbakov, ‘‘Shape derivatives of energy and regularity of minimizers for shallow elastic shells with cohesive cracks,’’ Nonlin. Anal.: Real World Appl. 65, 103505 (2022).

    Article  MathSciNet  MATH  Google Scholar 

  29. N. P. Lazarev and V. A. Kovtunenko, ‘‘Signorini-type problems over non-convex sets for composite bodies contacting by sharp edges of rigid inclusions,’’ Mathematics 10, 250 (2022).

    Article  Google Scholar 

  30. N. Lazarev and G. Semenova, ‘‘Optimal control of loads for an equilibrium problem describing a point contact of an elastic body with a sharp-shaped stiffener,’’ Zeitschr. Angew. Math. Phys. 73, 202 (2022).

    Article  MathSciNet  MATH  Google Scholar 

  31. A. S. Vol’mir, Nonlinear Dynamics of Plates and Shells (Nauka, Moscow, 1972) [in Russian].

    Google Scholar 

  32. A. M. Khludnev and V. A. Kovtunenko, Analysis of Cracks in Solids (WIT-Press, Southampton, 2000).

    Google Scholar 

  33. C. Baiocchi and A. Capelo, Variational and Quasivariational Inequalities. Applications to Free Boundary Problems (Wiley, Chichester, 1984).

    MATH  Google Scholar 

  34. A. M. Khludnev, Elasticity Problems in Nonsmooth Domains (Fizmatlit, Moscow, 2010) [in Russian].

    Google Scholar 

  35. V. A. Kovtunenko, A. N. Leont’ev, and A. M. Khludnev, ‘‘Equilibrium problem of a plate with an oblique cut,’’ J. Appl. Mech. Tech. Phys. 39, 302–311 (1998).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

The work is supported by the Ministry of Science and Higher Education of the Russian Federation, agreement no. 075-02-2022-881, February 2, 2022.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. P. Lazarev, G. M. Semenova or E. D. Fedotov.

Additional information

(Submitted by T. K. Yuldashev)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lazarev, N.P., Semenova, G.M. & Fedotov, E.D. An Equilibrium Problem for a Kirchhoff–Love Plate, Contacting an Obstacle by Top and Bottom Edges. Lobachevskii J Math 44, 614–619 (2023). https://doi.org/10.1134/S1995080223020245

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080223020245

Keywords:

Navigation