Log in

A Penalty Method for American Multi-Asset Option Problems

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we consider the partial differential equations approach for valuing American style options on multiple assets. We develop and analyze a penalty method to solve the parabolic variational inequality that characterizes the American style option. Such a method is obtained by adding a non-linear penalty term to the Black–Scholes equation. This approach gives a fixed solution domain, removing the free and moving boundary imposed by the early exercise feature of the contract. The proposed penalty method is based on the reformulation of the original inequality in the form of a variational inequality without constraints, which includes a non-differentiable functional that has a different form for convex and non-convex payoff functions. The penalty operator is defined as the gradient of a differentiable approximation of this functional. It is shown that various well-known penalty operators can be obtained in a similar way. Under realistic assumptions about the regularity of the payoff function, error estimates of a penalty method in uniform and energy norm are established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

REFERENCES

  1. A. Bensoussan and J.-L. Lions, Applications of Variational Inequalities in Stochastic Control (North-Holland, Amsterdam, 1982).

    MATH  Google Scholar 

  2. A. Bensoussan, ‘‘On the theory of option pricing,’’ Acta Appl. Math. 2, 139–158 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  3. I. Karatzas, ‘‘On the pricing of american options,’’ Appl. Math. Optim. 17, 37–60 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  4. P. Jaillet, D. Lamberton, and B. Laperyre, ‘‘Variational inequalities and the pricing of american options,’’ Acta Appl. Math. 21, 263–289 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  5. A. Friedman, Variational Principles and Free Boundary Problems (Wiley-Interscience, New York, 1990).

    MATH  Google Scholar 

  6. R. Glowinski, J.-L. Lions, and R. Tremolieres, Numerical Analysis of Variational Inequalities (North-Holland, Amsterdam, 1981).

    MATH  Google Scholar 

  7. M. Marcozzi, ‘‘On the approximation of optimal stop** problems with application to financial mathematics,’’ SIAM J. Sci. Comput. 22, 1865–1884 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  8. P. A. Forsyth and K. R. Vetzal, ‘‘Quadratic convergence for valuing American options using a penalty method,’’ SIAM J. Sci. Comput. 23, 2095–2122 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  9. Y. d’Halluin, P. A. Forsyth, and G. Labah, ‘‘A penalty method for American options with jump-diffusion processes,’’ Numer. Math. 97, 321–352 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  10. S. Wang, X. Q. Yang, and K. L. Teo, ‘‘Power penalty method for a linear complementarity problem arising from American option valuation,’’ J. Optim. Theory Appl. 129, 227–254 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  11. A. Q. Khaliq, D. A. Voss, and S. H. K. Kazmi, ‘‘A linearly implicit predictor-corrector scheme for pricing American options using a penalty method approach,’’ J. Banking Finance 30, 489–502 (2006).

    Article  Google Scholar 

  12. P. Kovalov, V. Linetsky, and M. Marcozzi, ‘‘Pricing multi-asset American options: A finite element method-of-lines with smooth penalty,’’ J. Sci. Comput. 33, 209–237 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  13. B. F. Nielsen, O. Skavhaug, and A. Tveito, ‘‘Penalty methods for the numerical solution of American multi-asset option problems,’’ J. Comput. Appl. Math. 222, 3–16 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  14. R. Zhang, Q. Zhang, and H. Song, ‘‘An efficient finite element method for pricing American multi-asset put options,’’ Commun. Nonlin. Sci. Numer. Simul. 29, 25–36 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  15. Q. Zhang, H. Song, C. Yang, and F. Wu, ‘‘An efficient numerical method for the valuation of American multi-asset options,’’ Comput. Appl. Math. 39, 240 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  16. R. Z. Dautov, ‘‘Penalty methods for one-sided parabolic problems with piecewise smooth obstacles,’’ Lobachevskii J. Math. 42, 1643–1651 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  17. R. Z. Dautov and A. V. Lapin, ‘‘Three new weak formulations of the problem of American call options valuation,’’ J. Phys.: Conf. Ser. 1158, 022033 (2019).

  18. R. Z. Dautov and A. V. Lapin, ‘‘Approximations of evolutionary inequality with Lipschitz-continuous functional and minimally regular input data,’’ Lobachevskii J. Math. 40, 425–438 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  19. R. Scholz, ‘‘Numerical solution of the obstacle problem by the penalty method. Part II. Time-dependent problems,’’ Numer. Math. 49, 255–268 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  20. M. Boman, A Posteriori Error Analysis in the Maximum Norm for a Penalty Finite Element Method for the Time-Dependent Obstacle Problem (Finite Element Center, Chalmers, 2000).

  21. R. Z. Dautov and A. I. Mikheeva, ‘‘Exact penalty operators and regularization of parabolic variational inequalities with in obstacle inside a domain,’’ Differ. Equat. 44, 75–81 (2008).

    MATH  Google Scholar 

  22. P. Jaillet, D. Lamberton, and B. Laperyre, ‘‘Variational inequalities and the pricing of american options,’’ Acta Appl. Math. 21, 263–289 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  23. P. Wilmott, Derivatives, the Theory and Practice of Financial Engineering (Wiley, Chichester, 1998).

    Google Scholar 

  24. L. Jiang, Mathematical Modeling and Methods of Option Pricing (Tongji Univ., China, 2005).

    Book  MATH  Google Scholar 

  25. Y. Achdou and O. Pironneau, Computational Methods for Option Pricing (SIAM, Philadelphia, 2005).

    Book  MATH  Google Scholar 

  26. R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology (Springer, Berlin, 1992), Vol. 5.

    MATH  Google Scholar 

  27. T. Roubiček, Nonlinear Partial Differential Equations with Applications (Birkhäuser, Basel, 2005).

    MATH  Google Scholar 

  28. L. C. Evans, Partial Differential Equations (AMS, Providence, RI, 1998).

    MATH  Google Scholar 

  29. D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and their Applications (Soc. Ind. Appl. Math., Philadelphia, 1980).

    MATH  Google Scholar 

Download references

Funding

This paper has been supported by the Kazan Federal University Strategic Academic Leadership Program (PRIORITY-2030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Z. Dautov.

Additional information

(Submitted by A. V. Lapin)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dautov, R.Z. A Penalty Method for American Multi-Asset Option Problems. Lobachevskii J Math 44, 269–281 (2023). https://doi.org/10.1134/S1995080223010092

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080223010092

Keywords:

Navigation