Log in

Determination of the Parameters of the Brinkman Model for a Porous Medium Composed of Nanofibers

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

The problem of determination of permeability and effective viscosity for a porous medium composed of nanofibers for the Brinkman hydrodynamic model is solved. On the surface of nanofibers the slip condition is accepted. The results of calculations for a model porous medium formed by fibers of round and square cross-sections shapes are presented. It is shown, that the dependence of permeability on porosity for the Brinkman model coincides with the dependence of permeability on porosity in the Darcy model. It was found, that the values of permeability and effective viscosities of the Brinkman model are in good agreement with the found approximation dependence independent of the Knudsen number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

REFERENCES

  1. H. C. Brinkman, ‘‘A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles,’’ Appl. Sci. Res. A1 (1), 27–34 (1947).

    MATH  Google Scholar 

  2. K. F. Freed and M. Muthukumar, ‘‘On the Stokes problem for a suspension of spheres at finite concentrations,’’ J. Chem. Phys. 68, 2088–2096 (1978).

    Article  Google Scholar 

  3. J. Koplik, H. Levine, and A. Zee, ‘‘Viscosity renormalization in the Brinkman equation,’’ Phys. Fluids 26, 2864–2870 (1983).

    Article  MATH  Google Scholar 

  4. J. Ochoa-Tapia and S. Whitaker, ‘‘Momentum transfer at the boundary between a porous medium and a homogeneous fluid. I. Theoretical development,’’ Int. J. Heat Mass Transfer 38, 2635–2646 (1995).

    Article  MATH  Google Scholar 

  5. V. M. Starov and V. G. Zhdanov, ‘‘Effective viscosity and permeability of porous media,’’ Colloids Surf., A 192, 363–375 (2001).

    Article  Google Scholar 

  6. J. Kolodziej, M. Mierzwiczak, and J. Grabski, ‘‘Computer simulation of the effective viscosity in Brinkman filtration equation using the Trefftz method,’’ J. Mech. Mater. Struct. 12, 93–106 (2017).

    Article  MathSciNet  Google Scholar 

  7. N. Martys, D. Bentz, and E. Garboczi, ‘‘Computer simulation study of the effective viscosity in Brinkman’s equation,’’ Phys. Fluids 6, 1434–1439 (1994).

    Article  MATH  Google Scholar 

  8. S. Zaripov, R. Mardanov, and V. Sharafutdinov, ‘‘Determination of Brinkman model parameters using Stokes flow model,’’ Transp. Porous Media 130, 529–557 (2019).

    Article  MathSciNet  Google Scholar 

  9. M. Deviene, Frottement et Exchanges Termiques duns les Gas Rerifies (Gausthier-Villars, Paris, 1958).

    Google Scholar 

  10. Z. Zhang and B. Y. H. Liu, ‘‘Experimental study of aerosol filtration in the transition flow regime,’’ Aerosol Sci. Technol. 16, 227–235 (1992).

    Article  Google Scholar 

  11. P. Li, C. Wang, Y. Zhang, and F. Wei, ‘‘Air filtration in the free molecular flow regime: A review of high-efficiency particulate air filters based on carbon nanotubes,’’ Small 10, 4543–4561 (2014).

    Article  Google Scholar 

  12. A. Basset, A Treatise on Hydrodynamics (Deighton Bell, Cambridge, 1888).

    MATH  Google Scholar 

  13. J. Pich, ‘‘Pressure drop of fibrous filters at small Knudsen numbers,’’ Ann. Occup. Hygiene 9, 23–27 (1966).

    Google Scholar 

  14. E. Lauga, M. Brenner, and H. Stone, ‘‘Microfluidics: The no-slip boundary condition,’’ in Springer Handbook of Experimental Fluid Mechanics (Springer, Berlin, 2007), pp. 1219–1240.

    Google Scholar 

  15. A. A. Kirsch and I. B. Stechkina, ‘‘Theory of aerosol filtration with fibrous filters,’’ in Fundamentals of Aerosol Science (Wiley, New York, 1978), pp. 165–256.

    Google Scholar 

  16. S. A. Hosseini and H. V. Tafreshi, ‘‘Modeling particle filtration in disordered 2-D domains: A comparison with cell models,’’ Sep. Purif. Technol. 74, 160–169 (2010).

    Article  Google Scholar 

  17. V. Kirsh, A. Budyka, and A. Kirsh, ‘‘Simulation of nanofibrous filters produced by the electrospinning method: 2. The effect of gas slip on the pressure drop,’’ Colloid J. 70, 584–588 (2008).

    Article  Google Scholar 

  18. R. F. Mardanov, S. K. Zaripov, and V. F. Sharafutdinov, ‘‘New mathematical model of fluid flow around nanofiber in a periodic cell,’’ Lobachevskii J. Math. 43 (8), 2206–2221 (2022).

    Article  MathSciNet  MATH  Google Scholar 

  19. J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics: With Special Applications to Particulate Media (Prentice-Hall, Englewood Cliffs, 1965).

    MATH  Google Scholar 

  20. R. F. Mardanov, S. K. Zaripov, and D. V. Maklakov, ‘‘Two-dimensional Stokes flows in porous medium composed of a large number of circular inclusions,’’ Eng. Anal. Bound. Elem. 113, 204–218 (2020).

    Article  MathSciNet  MATH  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author is grateful to Sh.Kh. Zaripov for helpful remarks.

Funding

The study was supported by the Russian Science Foundation grant no. 22-21-00176, https://rscf.ru/project/22-21-00176/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. F. Mardanov.

Additional information

(Submitted by A. M. Elizarov)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mardanov, R.F. Determination of the Parameters of the Brinkman Model for a Porous Medium Composed of Nanofibers. Lobachevskii J Math 43, 2970–2976 (2022). https://doi.org/10.1134/S1995080222130303

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080222130303

Keywords:

Navigation