Log in

Initial Successive Coefficients for Certain Classes of Univalent Functions

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

We consider functions of the type \(f(z)=z+a_{2}z^{2}+a_{3}z^{3}+\cdots\) from a family of all analytic and univalent functions in the unit disk. The aim of this article is to investigate the bounds of the difference of moduli of initial successive coefficients, i.e. \(\big{|}|a_{n+1}|-|a_{n}|\big{|}\) for \(n=1,\,2\) and for some subclasses of analytic univalent functions. In addition, we found that all the estimations are sharp in nature by constructing some extremal functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. V. Arora, S. Ponnusamy, and S. K. Sahoo, ‘‘Successive coefficients for spirallike and related functions,’’ Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A: Mat. 113, 2969–2979 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  2. V. Arora and S. K. Sahoo, ‘‘Meromorphic functions with small Schwarzian derivative,’’ Stud. Univ. Babes-Bolyai Math. 63, 355–370 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  3. P. L. Duren, Univalent Functions (Springer, New York, 1983).

    MATH  Google Scholar 

  4. A. W. Goodman, Univalent Functions (Mariner, Tampa, FL, 1983), Vols. 1–2.

    MATH  Google Scholar 

  5. U. Grenander and G. Szegő, Toeplitz Forms and their Applications (Univ. California Press, Beekeley, 1958).

  6. A. Z. Grinspan, ‘‘Improved bounds for the difference of adjacent coefficients of univalent functions,‘‘ in Some Questions in the Modern Theory of Functions, Proceedings of the Conference (Sib. Inst. Mat., Novosibirsk, 1976), pp. 41–45.

  7. W. K. Hayman, ‘‘On successive coefficients of univalent functions,’’ J. London. Math. Soc. 38, 228–243 (1963).

    Article  MathSciNet  MATH  Google Scholar 

  8. S. Kumar and S. K. Sahoo, ‘‘Preserving properties and pre-Schwarzian norms of nonlinear integral transforms,’’ Acta Math. Hungar. 162, 84–97 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  9. S. Kumar and S. K. Sahoo, ‘‘Radius of convexity for integral operators involving Hornich operations,’’ J. Math. Anal. Appl. 502, 125265 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  10. Y. Leung, ‘‘Successive coefficients of starlike functions,’’ Bull. London Math. Soc. 10, 193–196 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  11. M. Li, ‘‘A note on successive coefficients of spiralike functions,’’ FILOMAT 32, 1199–1207 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  12. M. Li and T. Sugawa, ‘‘A note on successive coefficients of convex functions,’’ Comput. Methods Funct. Theory 17, 179–193 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  13. R. J. Libera, ‘‘Univalent \(\alpha\)-spiral functions,’’ Canad. J. Math. 19, 449–456 (1967).

    Article  MATH  Google Scholar 

  14. R. J. Libera and E. J. Złotkiewicz, ‘‘Early coefficients of the inverse of a regular convex function,’’ Proc. Am. Math. Soc. 85, 225–230 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  15. R. J. Libera and E. J. Złotkiewicz, ‘‘Coefficient bounds for the inverse of a function with derivatives in \(\mathcal{P}\),’’ Proc. Am. Math. Soc. 87, 251–257 (1983).

    MathSciNet  MATH  Google Scholar 

  16. M. Obradović, S. Ponnusamy, and K.-J. Wirths, ‘‘Coefficient characterizations and sections for some univalent functions,’’ Sib. Math. J. 54, 679–696 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  17. M. Obradović, S. Ponnusamy, and K.-J. Wirths, ‘‘Logarithmic coefficients and a coefficient conjecture for univalent functions,’’ Monatsh. Math. 185, 489–501 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  18. S. Ozaki, ‘‘On the theory of multivalent functions. II,’’ Sci. Rep. Tokyo Bunrika Daigaku, Sect. A 4, 45–87 (1941).

    Google Scholar 

  19. Z. Peng and M. Obradović, ‘‘The estimate of the difference of initial successive coefficients of univalent functions,’’ J. Math. Inequal. 13, 301–314 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  20. J. A. Pfaltzgraff, ‘‘Univalence of the integral of \(f^{\prime}(z)^{\lambda}\),’’ Bull. London Math. Soc. 7, 254–256 (1975).

    Article  MathSciNet  MATH  Google Scholar 

  21. C. Pommerenke, ‘‘Probleme aus der Funktionentheorie,’’ Jber. Deutsch. Math.-Verein. 73, 1–5 (1971).

    MATH  Google Scholar 

  22. C. Pommerenke, Univalent Function (Vandenhoeck and Ruprecht, Göttingen, 1975).

  23. S. Ponnusamy and S. Rajasekaran, ‘‘New sufficient conditions for starlike and univalent functions,’’ Soochow J. Math. 21, 193–201 (1995).

    MathSciNet  MATH  Google Scholar 

  24. S. Ponnusamy, N. L. Sharma, and K. J. Wirths, ‘‘Logarithmic coefficients problems in families related to starlike and convex functions,’’ J. Aust. Math. Soc. 109, 230–249 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  25. S. Ponnusamy and V. Singh, ‘‘Univalence of certain integral transforms,’’ Glas. Mat., Ser. III 31 (2) (51), 253–261 (1996).

  26. S. Ponnusamy and A. Vasudevarao, ‘‘Region of variability of two subclasses of univalent functions,’’ J. Math. Anal. Appl. 332, 1323–1334 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  27. S. Ponnusamy and A. Vasudevarao, ‘‘Region of variability for functions with positive real part,’’ Ann. Polon. Math. 99, 225–245 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  28. Y. J. Sim and D. K. Thomas, ‘‘On the difference of coefficients of starlike and convex functions,’’ Mathematics 8 (9) (2020).

  29. Y. J. Sim and D. K. Thomas, ‘‘On the difference of inverse coefficients of univalent functions,’’ Symmetry 12 (12) (2020).

  30. Y. J. Sim and D. K. Thomas, ‘‘A note on spirallike functions,’’ Bull. Aust. Math. Soc. 105, 117–123 (2022).

    Article  MathSciNet  MATH  Google Scholar 

  31. V. Singh and P. N. Chichra, ‘‘Univalent functions \(f(z)\) for which \(zf^{\prime}(z)\) is \(\alpha\)-spirallike,’’ Indian J. Pure Appl. Math. 8, 253–259 (1977).

    MathSciNet  MATH  Google Scholar 

  32. L. Špaček, ‘‘Contribution à la théorie des fonctions univalentes,’’ Časop Pest. Mat.-Fys. 62, 12–19 (1933).

    MATH  Google Scholar 

  33. M. Tsuji, Potential Theory in Modern Function Theory (Maruzen, Tokyo, 1959).

    MATH  Google Scholar 

  34. T. Umezawa, ‘‘Analytic functions convex in one direction,’’ J. Math. Soc. Jpn. 4, 195–202 (1952).

    Article  MathSciNet  MATH  Google Scholar 

Download references

ACKNOWLEDGEMENTS

I would like to thank my Ph.D. supervisor Prof. Swadesh Kumar Sahoo for his helpful remarks and discussion. Also, author thankful to Dr. Vasudevarao Allu for his useful suggestions. The author thank the referee for his/her valuable comments for improving this paper.

Funding

The work of the author is supported by IIT Bhubaneswar through post-doctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vibhuti Arora.

Additional information

(Submitted by Karl-Joachim Wirths)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arora, V. Initial Successive Coefficients for Certain Classes of Univalent Functions. Lobachevskii J Math 43, 2080–2091 (2022). https://doi.org/10.1134/S1995080222110063

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080222110063

Keywords:

Navigation