Log in

Bistability in a One-Dimensional Model of a Two-Predators-One-Prey Population Dynamics System

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we study a classical two-predators-one-prey model. The classical model described by a system of three ordinary differential equations can be reduced to a one-dimensional bimodal map. We prove that this map has at most two stable periodic orbits. Besides, we describe the bifurcation structure of the map. Finally, we describe a mechanism that leads to bistable regimes. Taking this mechanism into account, one can easily detect parameter regions where cycles with arbitrary high periods or chaotic attractors with arbitrary high numbers of bands coexist pairwise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

REFERENCES

  1. J. Alebraheem and Y. Abu-Hasan, ‘‘Persistence of predators in a two predators- one prey model with non-periodic solution,’’ Appl. Math. Sci. 6, 943–956 (2012).

    MathSciNet  MATH  Google Scholar 

  2. V. Avrutin, L. Gardini, I. Sushko, and F. Tramontana, Continuous and Discontinuous Piecewise-Smooth One-dimensional Maps: Invariant Sets and Bifurcation Structures, Vol. 95 of Nonlinear Science, Series A (World Scientific, Singapore, 2019).

  3. Y. V. Bakhanova, A. O. Kazakov, and A. G. Korotkov, ‘‘Spiral chaos in Lotka–Volterra like models,’’ Zh. Srednevolzh. Mat. Ob-va 19 (2), 13–24 (2017).

    MATH  Google Scholar 

  4. G. J. Butler and P. Waltman, ‘‘Bifurcation from a limit cycle in a two predator one prey ecosystem modeled on a chemostat,’’ J. Math. Biol. 12, 295–310 (1981).

    Article  MathSciNet  Google Scholar 

  5. R. Devaney, An Introduction to Chaotic Dynamical Systems (CRC, Boca Raton, FL, 2003).

    MATH  Google Scholar 

  6. O. Diekmann and M. Kirkilionis, ‘‘Population dynamics: A mathematical bird’s eye view,’’ in Trends in Nonlinear Analysis, Ed. by M. Kirkilionis, S. Krömker, R. Rannacher, and F. Tomi (Springer, Berlin, 2003).

    Google Scholar 

  7. B. Dubey and R. K. Upadhuyay, ‘‘Persistence and extinction of one-prey and two-predators system,’’ Nonlin. Anal.: Model. Control 9, 307–329 (2004).

    Article  MathSciNet  Google Scholar 

  8. T. Eirola, A. V. Osipov, and G. Söderbacka, ‘‘Chaotic regimes in a dynamical system of the type many predators one prey,’’ Res. Reports A, No. 386 (Helsinki Univ. Technol., Helsinki, 1996).

  9. T. Eirola, A. V. Osipov, and G. Söderbacka, ‘‘On the appearance of chaotic regimes in one dynamical system of type two predators—one prey,’’ Actual Probl. Mod. Math., Boxitogorsk 1, 39–70 (1996).

    Google Scholar 

  10. A. Farajzadeh, M. H. R. Doust, F. Haghighifar, and D. Baleanu, ‘‘The stability of Gauss model having one-prey-and-two-predators,’’ Abstr. Appl. Anal. 2012, 219640 (2012).

    Article  MathSciNet  Google Scholar 

  11. W. Façanha, B. Oldeman, and L. Glass, ‘‘Bifurcation structures in two-dimensional maps: The endoskeletons of shrimps,’’ Phys. Lett. A 377, 1264–1268 (2013).

    Article  MathSciNet  Google Scholar 

  12. J. Gallas, ‘‘Dissecting shrimps: Results for some one-dimensional physical models,’’ Phys. A (Amsterdam, Neth.) 202, 196–223 (1994).

  13. V. Hadžiabdić, M. Mehuljić, and J. Bektešević, ‘‘Lotka–Volterra model with two predators and their prey,’’ TEM J. 6, 132–136 (2017).

    Google Scholar 

  14. C. S. Holling, ‘‘The components of predation as revealed by a study of small-mammal predation of the European pine sawfly,’’ Can. Entomol. 91, 293–320 (1959).

    Article  Google Scholar 

  15. S. Hsu, ‘‘Limiting behaviour for competing species,’’ SIAM J. Appl. Math. 34, 760–763 (1978).

    Article  MathSciNet  Google Scholar 

  16. S. Hsu, S. Hubell, and P. Waltman, ‘‘Competing predators,’’ SIAM J. Appl. Math. 35, 617–625 (1978).

    Article  MathSciNet  Google Scholar 

  17. S. Hsu, S. Hubell, and P. Waltman, ‘‘A contribution to the theory of competing predators,’’ Ecol. Monogr. 48, 337–349 (1978).

    Article  Google Scholar 

  18. J. Keener, ‘‘Oscillatory coexistence in the chemiostat: A codimension two unfolding,’’ SIAM J. Appl. Math. 43, 1005–1018 (1983).

    Article  MathSciNet  Google Scholar 

  19. M. Liu and P. S. Mandal, ‘‘Dynamical behavior of a one-prey two-predator model with random perturbations,’’ Commun. Nonlin. Sci. Numer. Simul. 28, 123–137 (2015).

    Article  MathSciNet  Google Scholar 

  20. M. C. Montano and B. Lisena, ‘‘A diffusive two predators-one prey model on periodically evolving domains,’’ Math. Methods Appl. Sci. (2021, in press).

  21. A. V. Osipov and G. Söderbacka, ‘‘Poincaré map construction for some classic two predators—one prey systems,’’ Int. J. Bifurc. Chaos Appl. Sci. Eng. 27, 1750116 (2017).

    Article  Google Scholar 

  22. D. F. M. Oliveira, M. Robnik, and E. Leonel, ‘‘Shrimp-shape domains in a dissipative kicked rotator,’’ Chaos 21, 043122 (2011).

    Article  MathSciNet  Google Scholar 

  23. N. Samardzija and L. D. Greller, ‘‘Explosive route to chaos through a fractal torus in a generalized Lotka–Volterra model,’’ Bull. Math. Biol. 50, 465–491 (1988).

    Article  MathSciNet  Google Scholar 

  24. D. Savitri, A. Suryanto, W. Kusumawinahyu, and Abadi, ‘‘A dynamics behaviour of two predators and one prey interaction with competition between predators,’’ IOP Conf. Ser.: Mater. Sci. Eng. 546, 052069 (2019).

  25. D. Singer, ‘‘Stable orbits and bifurcations of maps of the interval,’’ SIAM J. Appl. Math. 35, 260–267 (1978).

    Article  MathSciNet  Google Scholar 

  26. H. Smith, ‘‘The interaction of steady state and Hopf bifurcations in a two-predator-one-prey competition model,’’ SIAM J. Appl. Math. 42, 27–43 (1982).

    Article  MathSciNet  Google Scholar 

  27. G. J. Söderbacka and A. S. Petrov, ‘‘Review on the behaviour of a many predator—one prey system,’’ Dinam. Sist. 9 (37), 273–288 (2019).

    MATH  Google Scholar 

  28. R. Stoop, S. Martignoli, P. Benner, and Y. Uwate, ‘‘Shrimps: Occurrence, scaling and relevance,’’ Int. J. Bifurc. Chaos 22, 1230032 (2012).

    Article  MathSciNet  Google Scholar 

  29. A. Wikan and Ø. Kristensen, ‘‘Prey-predator interactions in two and three species population models,’’ Discrete Dyn. Nat. Soc. 2019, 9543139 (2019).

    Article  MathSciNet  Google Scholar 

Download references

ACKNOWLEDGMENTS

Authors dedicate the paper to the memory of Gennadiy Alexeevich Leonov.

Funding

Viktor Avrutin was supported by DFG, AV 111/2-2. Sergey Kryzhevich was supported by Gdańsk University of Technology by the DEC 14/2021/IDUB/I.1 grant under the Nobelium—‘‘Excellence Initiative—Research University’’ program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. Kryzhevich, V. Avrutin or G. Söderbacka.

Additional information

(Submitted by S. Yu. Pilyugin)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kryzhevich, S., Avrutin, V. & Söderbacka, G. Bistability in a One-Dimensional Model of a Two-Predators-One-Prey Population Dynamics System. Lobachevskii J Math 42, 3486–3496 (2021). https://doi.org/10.1134/S1995080222020135

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080222020135

Keywords:

Navigation