Log in

Bioresorbable Composites for Bone Reconstruction

  • REVIEWS
  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

More than one million surgical procedures are done annually worldwide to restore bone functions lost as a result of fractures or deformities. Various implants are available for bone reconstruction: however, choosing the material is still challenging. Use of allografts is limited because of the immune barrier and a deficiency of reconstruction material; implants based on metals or alloys have a higher elastic modulus compared with bones and require repeated surgery; and polymeric implants, although bioresorbable, have relatively poor mechanical properties. Intense studies are therefore carried out to develop composites based on resorbable polymers with filler components that vary in type, nature, and properties. This review considers the resorbable composites that are available for bone reconstruction. Based on the filler component, composites are classified into fiber-reinforced, dispersed particle-reinforced, and structural composites. The main advantages of dispersed filler components based on calcium phosphate are that they are simple to process, bioactive, biocompatible, and osteoconductive. A broad range of mechanical and biological properties and similarity in properties and structure to natural bones are the advantages of phosphate glass fiber-reinforced composites, resorbable polymers, and structural composites. Bioresorbable composite implants that are similar in their mechanical properties to bone tissue, persist until fracture consolidation is complete, and have an osteogenic potential, will possibly replace conventional metallic devices in the nearest future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. K. A. Hing, Phil. Trans. R. Soc. London, Ser. A 362, 2821 (2004). https://doi.org/10.1098/rsta.2004.1466

    Article  CAS  Google Scholar 

  2. S. N. Parikh, J. Orthopedics 25, 301 (2002).

    Google Scholar 

  3. R. M. Tikhilov, Travmatol. Ortoped. Ross. 2 (60), 153 (2011). https://doi.org/10.21823/2311-2905-2011-0-2-153-159

    Article  Google Scholar 

  4. V. I. Kalita, D. A. Malanin, V. A. Mamaeva, et al., Vestn. VolGMU, No. 4 (32), 17 (2009).

    Google Scholar 

  5. A. V. Karlov and I. A. Khlusov, Genii Ortoped., No. 3, 46 (2003).

  6. A. V. Popkov, Genii Ortoped., No. 3, 94 (2014).

  7. I. S. Razina, V. I. Chernova, M. A. Kolokolov, and I. N. Musin, Vestn. Kazan. Tekhnol. Univ. 17 (16), 162 (2014).

    CAS  Google Scholar 

  8. G. Tortora, Introduction to the Human Body (Harper Row, New York, 1988).

    Google Scholar 

  9. J. Hall, Guyton and Hall Textbook of Medical Physiology (Elsevier, Amsterdam, 2010).

    Google Scholar 

  10. K. A. Athanasiou, C. Zhu, D. R. Lanctot, et al., Tissue Eng. 6, 361 (2000). https://doi.org/10.1089/107632700418083

    Article  CAS  Google Scholar 

  11. A. Nather, Bone Grafts and Bone Substitutes: Basic Science and Clinical Applications (World Scientific, Singapore, 2005). https://doi.org/10.1142/5695

    Book  Google Scholar 

  12. F. G. Evans, Bull. N. Y. Acad. Med. 49, 751 (1973).

    CAS  Google Scholar 

  13. Y. An and R. Draughn, Mechanical Testing of Bone and the Bone-Implant Interface (CRC Press, Boca Raton, 1999). https://doi.org/10.1201/9781420073560

  14. S. Ramakrishna, J. Mayer, E. Wintermantel, and K. W. Leong, Compos. Sci. Technol. 61, 1189 (2001). https://doi.org/10.1016/S0266-3538(00)00241-4

    Article  CAS  Google Scholar 

  15. P. Schmutz, Quach-Vu, and I. Gerber, Electrochem. Soc. Interface 17, 35 (2008).

    Article  CAS  Google Scholar 

  16. O. Yoshimitsu, G. Emiko, M. Takeshi, and K. Kihei, Biomaterials 25, 5913 (2004). https://doi.org/10.1016/j.biomaterials.2004.01.064

    Article  CAS  Google Scholar 

  17. V. L. Skryabin, “Endoprostheses made of carbon composite material,” Doctoral (Med. Sci.) Dissertation (Vagner Perm. State Med. Univ., Yaroslavl’, 1993).

  18. C. W. Hughes, K. Page, R. Bibb, et al., Br. J. Oral. Maxillofac. Surg. 41, 50 (2003). https://doi.org/10.1016/s0266435602002498

    Article  CAS  Google Scholar 

  19. W. Schlickewei and C. Schlickewei, J. Macromol. Symp. 253, 10 (2007). https://doi.org/10.1002/masy.200750702

    Article  CAS  Google Scholar 

  20. V. V. Agadzhanyan, A. A. Pronskikh, V. A. Demina, et al., Politravma, No. 4, 85 (2016).

    Google Scholar 

  21. D. Eglin and M. Alini, Eur. Cells Mater. 16, 80 (2008). https://doi.org/10.22203/ecm.v016a09

    Article  CAS  Google Scholar 

  22. M. Bozkurt, C. Tigaran, M. Dalstra, et al., J. Foot Ankle Surg. 43, 138 (2004). https://doi.org/10.1053/j.jfas.2004.03.010

    Article  Google Scholar 

  23. T. G. Volova, V. I. Sevastianov, and E. I. Shishatskaya, Polyhydroxyalkanoates Biodegradable Polymers for Medicine (Platina, Krasnoyarsk, 2006) [in Russian].

    Google Scholar 

  24. F. Baino, Acta Biomater. 7, 3248 (2011). https://doi.org/10.1016/j.actbio.2011.05.016

    Article  CAS  Google Scholar 

  25. S. L. Woo, W. H. Akeson, R. D. Coutts, et al., J. Bone Jt. Surg., No. 15-A, 190 (1976).

  26. S. A. Brown and J. Vandergrift, Biomater. Med. Dev. Art. Org. 9, 27 (1981). https://doi.org/10.3109/10731198109117598

    Article  CAS  Google Scholar 

  27. J. A. Sziver, G. C. Weatherly, R. M. Pilliar, and H. U. Cameron, J. Biomed. Mater. Res. 15, 853 (1981). https://doi.org/10.1002/jbm.820150610

    Article  Google Scholar 

  28. N. Gillett, S. A. Brown, J. H. Dumbleton, and R. P. Pool, Biomaterials 6, 113 (1985). https://doi.org/10.1016/0142-9612(85)90074-2

    Article  CAS  Google Scholar 

  29. A. J. Tonino and R. C. Folmer, Clin. Mater. 2, 275 (1987).

    Article  Google Scholar 

  30. S. Gogolewski, Injury 31, 28 (2000). https://doi.org/10.1016/s0020-1383(00)80020-0

    Article  Google Scholar 

  31. M. Navarro, A. Michiardi, O. Castano, and J. A. Planell, J. R. Soc. Interface 5, 1137 (2008). https://doi.org/10.1098/rsif.2008.0151

    Article  CAS  Google Scholar 

  32. P. Maman, M. Nagpal, and G. Aggarval, Nanobiomater. Tissue Eng., 121 (2019). https://doi.org/10.1016/B978-0-12-816909-4.00006-3

  33. H. Hermawan, D. Ramdan, and J. R. P. Djuansjah, Metals for Biomedical Applications, Biomedical Engineering—From Theory to Applications (InTech, Rijeca, 2011). https://doi.org/10.5772/19033

  34. V. I. Gomzyak, V. A. Demina, E. V. Razuvaeva, et al., Tonk. Khim. Tekhnol. 12 (5), 5 (2017). https://doi.org/10.32362/2410-6593-2017-12-5-5-20

    Article  CAS  Google Scholar 

  35. N. Ashammakhi, H. Peltoniemi, and E. Waris, Plast. Reconstr. Surg. 108, 167 (2001). https://doi.org/10.1097/00006534-200107000-00027

    Article  CAS  Google Scholar 

  36. N. Ashammakhi, R. Suuronen, and J. Tiainen, J. Craniofac. Surg. 14, 247 (2003). https://doi.org/10.1097/00001665-200303000-00021

    Article  Google Scholar 

  37. A. U. Daniels, K. C. Melissa, and P. A. Kirk, J. Appl. Biomater. 1, 57 (1990). https://doi.org/10.1002/jab.770010109

    Article  CAS  Google Scholar 

  38. A. Sodergard and M. Stolt, Prog. Polym. Sci. 27, 1123 (2002). https://doi.org/10.1016/S0079-6700(02)00012-6

    Article  CAS  Google Scholar 

  39. J. C. Middleton and A. J. Tipton, Biomaterials 21, 2335 (2000). https://doi.org/10.1016/s0142-9612(00)00101-0

    Article  CAS  Google Scholar 

  40. E. Waris, Y. T. Konttinen, N. Ashammakhi, et al., Expert Rev. Med. Dev. 1, 229 (2004). https://doi.org/10.1586/17434440.1.2.229

    Article  Google Scholar 

  41. L. S. Nair and C. T. Laurencin, Prog. Polym. Sci. 32, 762 (2007). https://doi.org/10.1016/j.progpolymsci.2007.05.017

    Article  CAS  Google Scholar 

  42. J. Vasenius, S. Vainionpää, and K. Vihtonen, Biomaterials 11, 501 (1990). https://doi.org/10.1016/0142-9612(90)90065-x

    Article  CAS  Google Scholar 

  43. O. M. Böstman and H. K. Pihlajamäki, Clin. Orthop. 371, 216 (2000).

  44. I. Vroman and L. Tighzert, Materials 2, 307 (2009). https://doi.org/10.3390/ma2020307

    Article  CAS  Google Scholar 

  45. T. Maharana, B. Mohanty, and Y. S. Negi, Prog. Polym. Sci. 34, 99 (2009). https://doi.org/10.1016/j.progpolymsci.2008.10.001

    Article  CAS  Google Scholar 

  46. Y. Ramot, M. H. Zada, A. J. Domb, and A. Nyska, Adv. Drug Deliv. Rev. 107, 153 (2016). https://doi.org/10.1016/j.addr.2016.03.012

    Article  CAS  Google Scholar 

  47. T. Pohjonen, V. P. Heponen, M. Pellinen, et al., Trans. SOC. Biomater., No. 11 (1988).

  48. J. Tiainen, Y. Soini, P. Tormala, et al., J. Biomed. Mater. Res. B 70, 49 (2004). https://doi.org/10.1002/jbm.b.30013

    Article  CAS  Google Scholar 

  49. S. J. Holland and B. J. Tighe, Adv. Pharm. Sci. 6, 101 (1992).

    CAS  Google Scholar 

  50. P. A. Gunatillake and R. Adhikari, Eur. Cells Mater., No. 5, 1 (2003). https://doi.org/10.22203/ecm.v005a01

  51. R. Chandra and R. Rustgi, Prog. Polym. Sci. 23, 1273 (1998).

    Article  CAS  Google Scholar 

  52. T. K. Dash and V. B. Konkimalla, J. Control. Release 158, 15 (2012). https://doi.org/10.1016/j.jconrel.2011.09.064

    Article  CAS  Google Scholar 

  53. J. M. Estelles, A. Vidaurre, J. M. M. Duenes, et al., J. Mater. Sci. Mater. Med. 19, 189 (2008). https://doi.org/10.1007/s10856-006-0101-2

    Article  CAS  Google Scholar 

  54. K. J. Lowry, K. R. Hamson, L. Bear, et al., J. Biomed. Mater. Res. A 36, 536 (1997). https://doi.org/10.1002/(sici)1097-4636(19970915)36:4<536::aid-jbm12>3.0.co;2-8

    Article  CAS  Google Scholar 

  55. JA. Simon, L. Ricci, and D. Cesare, Am. J. Orthop. 26, 665 (1998).

    Google Scholar 

  56. P. B. Maurus and C. C. Kaeding, Operative Tech. Sports Med. 12, 158 (2004).

    Article  Google Scholar 

  57. S. Eshraghi and S. Das, Acta Biomater. 6, 2467 (2010). https://doi.org/10.1016/j.actbio.2010.02.002

    Article  CAS  Google Scholar 

  58. M. Sabir, X. Xu, and L. Li, J. Mater. Sci. 44, 5713 (2009). https://doi.org/10.1007/s10853-009-3770-7

    Article  CAS  Google Scholar 

  59. K. Rezwan, Q. Z. Chen, I. I. Blaker, and A. R. Boccaccini, Biomaterials 27, 3413 (2006). https://doi.org/10.1016/j.biomaterials.2006.01.039

    Article  CAS  Google Scholar 

  60. R. Z. le Geros, Clin. Orthop. Relat. Res. 395, 81 (2002). https://doi.org/10.1097/00003086-200202000-00009

  61. S. P. Mironov, A. L. Gintsburg, and N. A. Es’kin, in Proceedings of the 9th Workshop of Traumatologists-Orthopedists (Saratov, 2010), Vol. 3, p. 1122.

  62. S. Pezzatini, R. Solito, L. Morbidelli, et al., J. Biomed. Mater. Res. A 76, 656 (2006). https://doi.org/10.1002/jbm.a.30524

    Article  CAS  Google Scholar 

  63. C. Chatelet, O. Damour, and A. Domard, Biomaterials 3, 261 (2001). https://doi.org/10.1016/s0142-9612(00)00183-6

    Article  Google Scholar 

  64. M. Dash, F. Chiellini, R. M. Ottenbrite, and E. Chiellini, Prog. Polym. Sci. 8, 981 (2011). https://doi.org/10.1016/j.progpolymsci.2011.02.001

    Article  CAS  Google Scholar 

  65. V. E. Kamskaya, Nauch. Obozren. Biol. Nauki, No. 6, 36 (2016).

    Google Scholar 

  66. H. Ueno, T. Mori, and T. Fu**aga, Adv. Drug Deliv. Rev. 52, 105 (2001). https://doi.org/10.1016/s0169-409x(01)00189-2

    Article  CAS  Google Scholar 

  67. GOST (State Standard) No. 32794-2014, Polymer composites. Terms and definitions (2015).

  68. S. Fu, X. Feng, B. Lauke, and Y.-W. Mai, Composites, Part B 39, 933 (2008). https://doi.org/10.1016/j.compositesb.2008.01.002

    Article  CAS  Google Scholar 

  69. I. Ahmed, A. I. Parsons, G. Palmer, et al., Acta Biomater. 4, 1307 (2008). https://doi.org/10.1016/j.actbio.2008.03.018

    Article  CAS  Google Scholar 

  70. I. Ahmed, P. S. Cronin, E. A. Abou Neel, et al., J. Biomed. Mater. Res. B 898, 18 (2009). https://doi.org/10.1002/jbm.b.31182

    Article  CAS  Google Scholar 

  71. Y. Z. Wan, Y. L. Wang, X. H. Xu, and Q. Y. Li, J. Appl. Polym. Sci. 82, 150 (2001). https://doi.org/10.1002/app.1834

    Article  CAS  Google Scholar 

  72. M. Zimmerman, H. Alexander, R. Parsons, and P. K. Bajpai, Am. Chem. Soc., 132 (1991).

  73. G. Jiang, M. E. Evans, I. A. Jones, et al., Biomaterials 26, 2281 (2005). https://doi.org/10.1016/j.biomaterials.2004.07.042

    Article  CAS  Google Scholar 

  74. A. R. Boccaccini, M. Erol, W. Stark, et al., Compos. Sci. Technol. 70, 1764 (2010). https://doi.org/10.1016/j.compscitech.2010.06.002

    Article  CAS  Google Scholar 

  75. J. Lu, M. Dejou, M. Descamps, G. Koubi, et al., J. Biomed. Mater. Res. 63, 408 (2002). https://doi.org/10.1002/jbm.10259

    Article  CAS  Google Scholar 

  76. S. V. Dorozhkin, Biomaterials 31, 1465 (2010). https://doi.org/10.1016/j.biomaterials.2009.11.050

    Article  CAS  Google Scholar 

  77. S. K. Misra, T. Ansari, D. Mohn, et al., J. R. Soc. Interface 7, 453 (2010). https://doi.org/10.1098/rsif.2009.0255

    Article  CAS  Google Scholar 

  78. S. K. Misra, S. N. Nazhat, S. P. Valappil, et al., Biomacromolecules 8, 2112 (2007). https://doi.org/10.1021/bm0701954

    Article  CAS  Google Scholar 

  79. C. Ohtsuki, M. Kamitakahara, and T. Miyazaki, J. R. Soc. Interface 6, 5349 (2009). https://doi.org/10.1098/rsif.2008.0419.focus

    Article  CAS  Google Scholar 

  80. N. Ramesh, S. C. Moratti, and G. J. Dias, Soc. Biomater. 00B, 1 (2017). https://doi.org/10.1002/jbm.b.33950

    Article  CAS  Google Scholar 

  81. A. Ambard and J. Mueninghoff, J. Proshodont. 15, 321 (2006). https://doi.org/10.1111/j.1532-849X.2006.00129.x

  82. V. I. Pakhalyuk, S. I. Kalinin, and G. D. Olinichenko, Ortoped., Travmatol., No. 4, 162 (2003).

  83. L. M. Bengus, N. V. Dedukh, and S. V. Malyshkina, Ukr. Morfol. Al’manakh 7 (3), 11 (2009).

    Google Scholar 

  84. E. Pietrzykowska, R. Mukhovskyi, and A. Chodara, Mater. Lett. 236, 625 (2019). https://doi.org/10.1016/j.matlet.2018.11.018

    Article  CAS  Google Scholar 

  85. Q. Dong, L. C. Chow, T. Wang, et al., Colloids Surf., A 457, 256 (2014). https://doi.org/10.1016/j.colsurfa.2014.05.047

    Article  CAS  Google Scholar 

  86. X. Wang, Y. Tan, B. Zhang, et al., J. Biomed. Mater. Res. A 89, 1079 (2009). https://doi.org/10.1002/jbm.a.32087

    Article  CAS  Google Scholar 

  87. X. Wang, J. Ma, Y. Wang, and B. He, Biomaterials 23, 4167 (2002). https://doi.org/10.1016/s0142-9612(02)00153-9

    Article  CAS  Google Scholar 

  88. Zh. Li, L. Yubao, Y. Ai**, et al., J. Mater. Sci.: Mater. Med. 16, 213 (2005). https://doi.org/10.1007/s10856-005-6682-3

    Article  CAS  Google Scholar 

  89. S. Teng, E. Lee, B. Yoon, et al., J. Biomed. Mater. Res. A 88, 569 (2009). https://doi.org/10.1002/jbm.a.31897

    Article  CAS  Google Scholar 

  90. Y. Zhang, J. R. Venugopal, A. El-Turki, et al., Biomaterials 29, 4314 (2008). https://doi.org/10.1016/j.biomaterials.2008.07.038

    Article  CAS  Google Scholar 

  91. I. Yamaguchi, K. Tokuchi, H. Fukuzaki, et al., J. Biomed. Mater. Res. 55, 20 (2001). https://doi.org/10.1002/1097-4636(200104)55:1<20::aid-jbm30>3.0.co;2-f

    Article  CAS  Google Scholar 

  92. C. **anmiao, L. Yubao, Z. Yi, et al., Mater. Sci. Eng. C 29, 29 (2009). https://doi.org/10.1016/j.msec.2008.05.008

    Article  CAS  Google Scholar 

  93. I. Manjubala, I. Ponomarev, I. Wilke, and K. Jandt, J. Biomed. Mater. Res. A 84, 7 (2008). https://doi.org/10.1002/jbm.b.30838

    Article  CAS  Google Scholar 

  94. W. Thein-Han and R. Misra, Acta Biomater. 5, 1182 (2009). https://doi.org/10.1016/j.actbio.2008.11.025

    Article  CAS  Google Scholar 

  95. Z. Huang, Y. Dong, C. Chu, and P. Lin, Mater. Lett. 62, 3376 (2008). https://doi.org/10.1016/j.matlet.2008.03.045

    Article  CAS  Google Scholar 

  96. X. Pang, T. Casagrande, and I. Zhitomirsky, J. Colloid Interface Sci. 330, 323 (2009). https://doi.org/10.1016/j.jcis.2008.10.070

    Article  CAS  Google Scholar 

  97. A. Matsuda, T. Ikoma, H. Kobayashi, and J. Tanaka, Mater. Sci. Eng. C 24, 723 (2004). https://doi.org/10.1016/j.msec.2004.08.047

    Article  CAS  Google Scholar 

  98. J. Venkatesan and S.-K. Kim, Mar. Drugs 8, 2252 (2010). https://doi.org/10.3390/md8082252

    Article  CAS  Google Scholar 

  99. J. Oliveira, M. Rodrigues, S. Silva, et al., Biomaterials 27, 6123 (2006). https://doi.org/10.1016/j.biomaterials.2006.07.034

    Article  CAS  Google Scholar 

  100. H. Xu and C. Simon, Biomaterials 26, 1337 (2005). https://doi.org/10.1016/j.biomaterials.2004.04.043

    Article  CAS  Google Scholar 

  101. H. Yuan, N. Chen, X. Lu, and B. Zheng, J. Nan**g Med. Univ. 22, 372 (2008). https://doi.org/10.1016/S1007-4376(09)60009-5

    Article  CAS  Google Scholar 

  102. Q. Hu, B. Li, M. Wang, and J. Shen, Biomaterials 25, 779 (2004). https://doi.org/10.1016/s0142-9612(03)00582-9

    Article  CAS  Google Scholar 

  103. V. R. Sherman, W. Yang, and M. A. Meyers, J. Mech. Behav. Biomed. Mater. 52, 22 (2015). https://doi.org/10.1016/j.jmbbm.2015.05.023

    Article  CAS  Google Scholar 

  104. M. Geiger, Adv. Drug Deliv. Rev. 55, 1613 (2003). https://doi.org/10.1016/j.addr.2003.08.010

    Article  CAS  Google Scholar 

  105. M. S. Islam and M. E. Todo, Mater. Lett. 173, 231 (2016). https://doi.org/10.1080/21870764.2019.1600226

    Article  CAS  Google Scholar 

  106. L. Chen, J. Hu, J. Ran, et al., Polym. Compos. 37, 81 (2016). https://doi.org/10.1002/pc.23157

    Article  CAS  Google Scholar 

  107. G. Vozzi, C. Corallo, S. Carta, et al., J. Biomed. Mater. Res. A 102, 1415 (2014). https://doi.org/10.1002/jbm.a.34823

    Article  CAS  Google Scholar 

  108. P. A. Karalkin, N. S. Sergeeva, V. S. Komlev, et al., Geny Kletki 11 (3), 94 (2016).

    Google Scholar 

  109. A. Z. Kharazi, M. H. Fathi, and F. Bahmany, Mater. Des. 31, 1468 (2010). https://doi.org/10.1016/j.matdes.2009.08.043

    Article  CAS  Google Scholar 

  110. L. Ehrenfried, M. Patel, and R. Cameron, J. Mater. Sci.: Mater. Med. 19, 459 (2008). https://doi.org/10.1007/s10856-006-0061-6

    Article  CAS  Google Scholar 

  111. H. Zhou, A. Touny, and S. Bhaduri, J. Mater. Sci.: Mater. Med. 22, 1183 (2011). https://doi.org/10.1007/s10856-011-4295-6

    Article  CAS  Google Scholar 

  112. R. L. Dunn and R. A. Casper, “Method of producing biodegradable prosthesis and products,” Eur. Patent No. 146398 (1984).

  113. R. A. Casper, R. L. Dunn, and B. S. Kelley, in Proceedings of Second World Congress on Biomaterials, Washington, D.C., 1984, p. 278.

  114. B. S. Kelley, R. L. Dunn, G. C. Battiston, et al., in Proceedings of the 12th Annual Meeting of the Society of Biomaterials, Minneapolis-St Paul, Minnesota, USA, 1986, p. 167.

  115. W. S. DePolo and D. G. Baird, Polym. Comp. 30, 188 (2009). https://doi.org/10.1002/pc.20554

    Article  CAS  Google Scholar 

  116. X.-I. Liao, W.-F. Xu, Y.-I. Wang, et al., Trans. Nonferr. Met. Soc. China., No. 3, 748 (2009).

  117. A. R. Boccaccini and V. Maquet, Comp. Sci. Technol. 63, 2417 (2003).

    Article  CAS  Google Scholar 

  118. E. Pirhonen, H. Niiranen, T. Niemelii, et al., J. Biomed. Mater. Res. B 77, 227 (2006).

    Article  CAS  Google Scholar 

  119. D. Brauer, C. Russel, S. Vogt, et al., J. Mater. Sci.: Mater. Med. 19, 121 (2008). https://doi.org/10.1007/s10856-007-3147-x

    Article  CAS  Google Scholar 

  120. A. J. Parsons, I. Ahmed, P. Haque, et al., J. Biol. Eng., No. 6, 318 (2009). https://doi.org/10.1016/S1672-6529(08)60132-8

  121. C. A. Scotchford, M. Shataheri, P. S. Chen, et al., J. Biomed. Mater. Res. A 96, 230 (2010). https://doi.org/10.1002/jbm.a.32977

    Article  CAS  Google Scholar 

  122. S. S. Feng, Expert Rev. Med. Dev., No. 1, 115 (2004). https://doi.org/10.1586/17434440.1.1.115

  123. H. Liu, E. B. Slamovich, and T. Webster, Int. J. Nanomed., No. 1, 541 (2006). https://doi.org/10.2147/nano.2006.1.4.541

  124. P. Christel, F. Chabot, J. C. Leray, et al., “Biodegradable composites for internal fixation,” in Biomaterials (Wiley, New York, 1980).

    Google Scholar 

  125. M. Dauner, J. Mater. Sci.: Mater. Med. 9, 173 (1998). https://doi.org/10.1023/a:1008823804460

    Article  CAS  Google Scholar 

  126. P. Tormala, S. Vainionpaa, M. Pellinen, et al., Trans. SOC. Biomater. 11, 501 (1988).

    Google Scholar 

  127. S. Vainionpaa, A. Majola, M. Mero, et al., Trans. SOC. Biomater. 11, 500 (1988).

    Google Scholar 

  128. X. Zhang, H. Hua, X. Shen, and Q. Yang, Polymer 48, 1005 (2007). https://doi.org/10.1016/j.polymer.2006.12.028

    Article  CAS  Google Scholar 

  129. J. Wang, H. Li, J. Gao, and X. Meng, Adv. Mater. Res. 79, 2055 (2009). doi 10.4028/www.scientific.net/AMR.79-82.2055

  130. E. Bergsma, W. E. de Bruijn, F. R. Rozema, et al., Biomaterials 16, 25 (1995). https://doi.org/10.1016/0142-9612(95)91092-d

    Article  CAS  Google Scholar 

  131. A. Hoppe, N. S. Giildal, and A. R. Boccaccini, Biomaterials 32, 2757 (2011). https://doi.org/10.1016/j.biomaterials.2011.01.004

    Article  CAS  Google Scholar 

  132. R. K. Brow, J. Non-Cryst. Solids 263–264, 1 (2000). https://doi.org/10.1016/S0022-3093(99)00620-1

    Article  Google Scholar 

  133. Y. K. Lee and S. H. Choi, J. Korean Acad. Periodontol. 28, 273 (2008). https://doi.org/10.5051/jkape.2008.38.Suppl.273

    Article  Google Scholar 

  134. P. Haque, A. J. Parsons, I. A. Barker, et al., Compos. Sci. Technol. 70, 1854 (2010).

    Article  CAS  Google Scholar 

  135. E. Leonardi, G. Ciapetti, N. Baldini, et al., Acta Biomater. 6, 598 (2010). https://doi.org/10.1016/j.actbio.2009.07.017

    Article  CAS  Google Scholar 

  136. M. Navarro, M. P. Ginebra, and J. A. Planell, J. Biomed. Mater. Res. A 67, 1009 (2003). https://doi.org/10.1002/jbm.a.20014

    Article  CAS  Google Scholar 

  137. P. Melo, E. Tarrant, T. Swift, et al., Mater. Sci. Eng. 104, 1 (2019). https://doi.org/10.1016/j.msec.2019.109929

    Article  CAS  Google Scholar 

  138. L. Onal, S. Cozien-Cazuc, I. A. Jones, and C. D. Rudd, J. Appl. Polym. Sci. 107, 3750 (2008). https://doi.org/10.1002/app.27518

    Article  CAS  Google Scholar 

  139. T. Pohjonen, P. Tormala, J. Mikkola, et al., Proceedings of the 6th International Conference PIMS, Leeuwenhorst Congress Centre, The Netherlands, 1989, p. 34/1.

  140. J. E. Raiha, Clin. Mater. 10, 35 (1992). https://doi.org/10.1016/0267-6605(92)90082-5

    Article  CAS  Google Scholar 

  141. H. Pihlajamaki, O. Bostman, E. Hirvensalo, et al., J. Bone Jt. Surg. 74B, 853 (1992).

    Article  Google Scholar 

  142. S. L. Stares, L. Boehs, and M. C. Fredel, Polymeros 22, 378 (2012). https://doi.org/10.1590/S0104-14282012005000056

    Article  CAS  Google Scholar 

  143. R. Suuronen, T. Pohjonen, J. Hietanen, and C. Lindqvist, J. Oral Maxillofac. Surg. 56, 604 (1998). https://doi.org/10.1016/s0278-2391(98)90461-x

    Article  CAS  Google Scholar 

  144. R. R. Bos, G. Boering, F. R. Rozema, and J. W. Leenslag, J. Oral Maxillofac. Surg. 45, 751 (1987). https://doi.org/10.1016/0278-2391(87)90194-7

    Article  CAS  Google Scholar 

  145. J. E. Bergsma, W. C. de Bruijn, F. R. Rozema, et al., Biomaterials 16, 25 (1995). https://doi.org/10.1016/0142-9612(95)91092-d

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (project no. 19-73-30003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Tagandurdyeva.

Additional information

Translated by T. Tkacheva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tagandurdyeva, N., Yudin, V.E. Bioresorbable Composites for Bone Reconstruction. Nanotechnol Russia 15, 400–414 (2020). https://doi.org/10.1134/S1995078020040151

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078020040151

Navigation