Log in

Estimation of the thickness of graphite nanofilm on a silicon substrate by using energy dispersive X-ray analysis data

  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

Energy-dispersive X-ray spectroscopy is applied to analyze composition and thickness of graphite nanofilm on a substrate. We estimate the thickness of graphite nanofilm on a silicon substrate using a simple equation proposed in this work. The equation is based on data of the energy-dispersive microanalysis and not contains fitting parameters. The condition of applicability of the formula is a low value of the electron acceleration voltage at which the depth of electron beam penetration not exceeds a silicon oxide layer thickness. The number of graphite nanofilm layers estimated from the calculated thickness is reasonably confirmed by Raman spectroscopy data. It is shown, that the number of graphite nanofilm layers can be determined by carbon atomic content in at %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Kim, H. J. Park, B. C. Woo, et al., “Electric property evolution of structurally defected multilayer graphene,” Nano Lett. 8, 3092–3096 (2008).

    Article  Google Scholar 

  2. J. Ye, M. F. Craciun, M. Koshino, et al., “Accessing the transport properties of graphene and its multilayers at high carrier density,” Proc. Natl. Acad. Sci. 108, 13002–13006 (2011).

    Article  Google Scholar 

  3. A. L. Grushina, D.-K. Ki, M. Koshino, et al., “Insulating state in tetralayers reveals an even–odd interaction effect in multilayer graphene,” Nature Commun. 6, 63051–63057 (2015).

    Article  Google Scholar 

  4. M. Koshino and Sh. Ando, “Electronic structures and optical absorption of multilayer graphenes,” Solid State Commun. 149, 1123–1127 (2009).

    Article  Google Scholar 

  5. M. F. Craciun, S. Russo, M. Yamomoto, et al., “Trilayer graphene is a semimetal with a gate-tunable band overlap,” Nature Nanotechnol. 4, 383–388 (2009).

    Article  Google Scholar 

  6. H. Zhou, C. Qiu, Zh. Liu, et al., “Thickness-dependent morphologies of gold on n-layer graphenes,” J. Am. Chem. Soc. 132, 944–946 (2010).

    Article  Google Scholar 

  7. A. C. Ferrari, “Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, do** and nonadiabatic effects,” Solid State Commun. 143, 47–57 (2007).

    Article  Google Scholar 

  8. Ch. Cong, N. Yu, et al., “Raman characterization of ABA-and ABC-stacked trilayer graphene,” ACS Nano 5, 8760–8768 (2011).

    Article  Google Scholar 

  9. T. A. Nguyen, J. U. Lee, D. Yoon, and H. Cheong, “Excitation energy dependent Raman signatures of ABA-and ABC-stacked few-layer graphene,” Sci. Rep. 4, 4630 (2014).

    Google Scholar 

  10. C. Casiraghi, A. Hartschuh, E. Lidorikis, et al., “Rayleigh imaging of graphene and graphene layers,” Nano Lett. 7, 2711–2717 (2007).

    Article  Google Scholar 

  11. K. S. Novoselov, D. Jiang, F. Schedin, et al., “Twodimensional atomic crystals,” Proc. Natl. Acad. Sci. USA 102, 10451–10453 (2005).

    Article  Google Scholar 

  12. A. Gupta, G. Chen, P. Joshi, et al., “Raman scattering from high-frequency phonons in supported n-graphene layer films,” Nano Lett. 6, 2667–2673 (2006).

    Article  Google Scholar 

  13. P. Nemes-Incze, Z. Osvath, et al., “Anomalies in thickness measurements of graphene and few layer graphite crystals by tap** mode atomic force microscopy,” Carbon 46, 1435–1442 (2008).

    Article  Google Scholar 

  14. D. A. Cole, J. R. Shallenberger, S. W. Novak, et al., “SiO2 thickness determination by X-ray photoelectron spectroscopy, Auger electron spectroscopy, secondary ion mass spectrometry, Rutherford backscattering, transmission electron microscopy, and ellipsometry,” J. Vac. Sci. Technol. B 18, 440–444 (2000).

    Article  Google Scholar 

  15. Z. H. Lu, J. P. McCaffrey, B. Brar, et al., “SiO2 film thickness metrology by X-ray photoelectron spectroscopy,” Appl. Phys. Lett. 7, 2764–2766 (1997).

    Article  Google Scholar 

  16. T. Franquet, M. Conard, et al., “Thickness and composition measurements of nanoelectronics multilayer thin films by energy dispersive spectroscopy (EDS),” J. Phys.: Conf. Ser. 417, 012033 (2013).

    Google Scholar 

  17. I. Prencipe, D. Dellasega, et al., “Energy dispersive X-ray spectroscopy for nanostructured thin film density evaluation,” Sci. Technol. Adv. Mater. 16, 025007 (2015).

    Article  Google Scholar 

  18. W. Reuter, I. D. Kuptsis, et al., “X-ray production range in solids by 2–15 keV electrons,” J. Phys. D: Appl. Phys. 11, 2633–2642 (1978).

    Article  Google Scholar 

  19. D. A. Swell, G. Love, and V. D. Scott, “Universal correction procedure for electron-probe microanalysis: I. Measurement of X-ray depth distributions in solids,” J. Phys. D: Appl. Phys. 18, 1233–1243 (1985).

    Article  Google Scholar 

  20. R. Pascual, L. R. Cruz, et al., “Thin film thickness measurement using the energy-dispersive spectroscopy technique in a scanning electron microscope,” Thin Solid Films 185, 279–286 (1990).

    Article  Google Scholar 

  21. E. Peiner, K. Hansen, and A. Schlachetzki, “Thickness control of InP and In0.53Ga0.47As thin films by energydispersive X-ray spectrometry,” Thin Solid Films 256, 143–147 (1995).

    Article  Google Scholar 

  22. K. W. Habiger, “Thickness measurement of thin films: comparison of techniques using characteristic X-ray line ratio techniques,” Thin Solid Films 215, 108–114 (1992).

    Article  Google Scholar 

  23. L. Zhuang, S. Bao, et al., “Thin film thickness measurement using electron probe microanalyzer,” in Proceedings of 2009 IEEE International Conference on Applied Superconductivity and Electromagnetic Devices, Chengdu, China, Sept. 25–27, 2009, pp. 142–144.

    Article  Google Scholar 

  24. T. Conard, K. Arstila, et al., “Composition quantification of microelectronics multilayer thin films by EDX: toward small scale analysis,” MRS Proc. 1184, HH08-08 (2009).

    Article  Google Scholar 

  25. C. Sedat, Thickness Determination of Thin Films by Energy Dispersive X-ray Spectroscopy (2010). http://etd.lib.metu.edu.tr/upload/12612822/index.pdf

    Google Scholar 

  26. S. J. B. Reed, “Electron microprobe analysis at low operating voltage,” Discuss. Am. Mineral. 57, 1550–1551 (1972).

    Google Scholar 

  27. D. M. Kerrick, L. B. Eminhizer, and J. F. Villaume, “The role of carbon film thickness in electron microprobe analysis,” Am. Miner. 58, 920–925 (1973).

    Google Scholar 

  28. H. Hiura, H. Miyazaki, and K. Tsukagoshi, “Determination of the number of graphene layers: discrete distribution of the secondary electron intensity derived from individual graphene layers,” Appl. Phys. Express 3, 095101 (2010).

    Article  Google Scholar 

  29. M. V. Zamoryanskaya and V. I. Sokolov, “Study of the structure of thermal-oxide films on silicon by cathodoluminescence,” Phys. Solid State 40, 1797–1801 (1998).

    Article  Google Scholar 

  30. S. J. B. Reed, Electron Microprobe Analysis and Scanning Electron Microscopy in Geology (Cambridge Univ. Press, Cambridge, 2010; Tekhnosfera, Moscow, 2008).

    Google Scholar 

  31. Ch. H. Lui et al., “Imaging stacking order in few-layer graphene,” Nano Lett. 11, 164 (2011).

    Article  Google Scholar 

  32. M. Ishigami, J. H. Chen, et al., “Atomic structure of graphene on SiO2,” Nano Lett. 7, 1643 (2007).

    Article  Google Scholar 

  33. Quantitative Electron-Probe Microanalysis, Ed. by V. D. Scott and G. Love (Wiley, Ellis Horwood, Chichester, 1983; Mir, Moscow, 1986).

    Google Scholar 

  34. O. V. Aleksandrov and A. I. Dusj, “Effect of siliconsurface orientation in the bulk model of thermal oxidation,” Semiconductors 43, 1373 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. E. Timofeeva.

Additional information

Original Russian Text © T.E. Timofeeva, V.B. Timofeev, V.I. Popov, S.A. Smagulova, 2016, published in Rossiiskie Nanotekhnologii, 2016, Vol. 11, Nos. 7–8.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Timofeeva, T.E., Timofeev, V.B., Popov, V.I. et al. Estimation of the thickness of graphite nanofilm on a silicon substrate by using energy dispersive X-ray analysis data. Nanotechnol Russia 11, 454–460 (2016). https://doi.org/10.1134/S1995078016040182

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078016040182

Navigation