Log in

Micronization of Levofloxacin Hemihydrate Using Supercritical Trifluoromethane

  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

Micronization of the pharmaceutical substance levofloxacin hemihydrate (LFC) was studied by the RESS method with trifluoromethane (CHF3) as a polar supercritical solvent. Scanning electron microscopy showed that, at a CHF3 temperature of 50°C, particles of micronized LFC have the shape of microgranules of submicron size. At a temperature of 100°C, the particles take the shape of thin (less than 0.1-μm-thick) elongated plates with rounded edges. At this temperature, an increase in the CHF3 pressure from 20 to 35 MPa leads to an increase in the average particle size from 1 to 2 μm, respectively. X-ray powder diffraction analysis of samples obtained at a temperature of 50°C determined the identity of the original and micronized LFC substances, which correspond to the structure of levofloxacin hemihydrate C36H40F2N6O8⋅H2O. An increase in the process temperature to 100°C leads to the formation of one of pseudopolymorphs of levofloxacin—levofloxacin monohydrate C18H20F2N3O4⋅H2O—in the micronized LFC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. A. Srivastava, T. Yadav, S. Sharma, A. Nayak, A. Kumari, and N. Mishra, J. Biosci. Med. 4, 69 (2016).

    CAS  Google Scholar 

  2. S. Fredenberg, M. Wahlgren, M. Reslow, and A. Axelsson, Int. J. Pharmaceut. 415 (34), 2011.

  3. Design of Controlled Release Drug Delivery Systems, Ed. by X. Li and B. R. Jasti (Hill-McGraw, New York, 2006).

    Google Scholar 

  4. K. Park, J. Controlled Release 190 (3), 2014.

  5. D. S. North, D. N. Fish, and J. J. Redington, Pharmacotherapy 18 (915), 1998.

  6. Zhi Hui Loh, Asim Kumar Samanta, and Paul Wan Sia Heng, Asian J. Pharmaceut. Sci. 10 (255), 2015.

  7. E. Reverchon and R. J. Adami, J. Supercrit. Fluids 37 (1), 1 (2006).

    Article  CAS  Google Scholar 

  8. I. Pasquali and R. Bettini, Int. J. Pharm. 364 (176), 2008.

  9. A. M. Vorobei, A.G. Fedorovskiy, M.O. Kostenko, Ya. I. Zuev, and O.O. Parenago, Russ. J. Phys. Chem. B 16 (1416), 2022. https://doi.org/10.1134/S1990793122080152

  10. E. Revershon, J. Supercrit. Fluids. 15 (1), 1999.

  11. R. Chim, S. Marceneiro, M. E. M. Braga, A. M. A. Dias, and H. C. de Sousa, Fluid Phase Equilibria 331 (6), 2012.

  12. E. N. Antonov, L. I. Krotova, G. V. Mishakov, and V. K. Popov, Russ. J. Phys. Chem. B 14 (1225), 2020. https://doi.org/10.1134/S1990793120070210

  13. E. N. Antonov, L. I. Krotova, G. V. Mishakov, and V. K. Popov, Russ. J. Phys. Chem. B 15 (1281), 2021. https://doi.org/10.1134/S1990793121080091

  14. PubChem. Levofloxacin. https://pubchem.ncbi.nlm. nih.gov/compound/Levofloxacin#section=Structures.

  15. Research Services Branch. https://imagej.nih.gov/.

  16. W. H. Walton, Nature 162 (329), 1948.

  17. Ning Wei, Lina Jia, Zeren Shang, Junbo Gong, Songgu Wu, **gkang Wang, and Weiwei Tang, CrystEngComm 21 (6196), 2019.

  18. T. Shinozaki, M. Ono, K. Higashi, and K. Moribe, J. Pharm. Sci. 108 (2383), 2019.

  19. E.M. Gorman, B. Samas, and E.J. Munson, J. Pharm. Sci. 101 (9), 3319 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. I. Nugrahani, M.R. Sulaiman, C. Eda, H. Uekusa, and S. Ibrahim, Pharmaceutics 15 (1), 124 (2023).

    Article  CAS  Google Scholar 

  21. H. Kitaoka, C. Wada, R. Morrot, and H. Hakusui, Chem. Pharm. Bull. 43 (4), 649 (1995).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was carried out within the framework of the state assignment for the Federal Research Center “Crystallography and Photonics,” Russian Academy of Sciences, Moscow, Russia. The X-ray powder diffraction analysis was performed using equipment of the Center for Shared Use of Scientific Equipment, Federal Research Center “Crystallography and Photonics,” Russian Academy of Sciences, Moscow, Russia.

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. V. Mishakov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by V. Glyanchenko

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antonov, E.N., Ivanova, A.G., Krotova, L.I. et al. Micronization of Levofloxacin Hemihydrate Using Supercritical Trifluoromethane. Russ. J. Phys. Chem. B 17, 1555–1560 (2023). https://doi.org/10.1134/S199079312308002X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S199079312308002X

Keywords:

Navigation