Log in

The Rate of the Oxygen Absorption by the Styrene Epoxide–p-Toluene Sulfonic Acid Double System Depending on the Structure of the Aliphatic Tail of the Alcohol Solvent

  • KINETICS AND MECHANISM OF CHEMICAL REACTIONS, CATALYSIS
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

Oxygen oxidation of the styrene epoxide (SE)–p-toluene sulfonic acid (TSA) double system (DS) in solutions of three primary alcohols, 1-octanol (OCT), n-butanol (BUT), and ethanol (ET), is studied. The corresponding concentration expressions of oxidation rates are as follows: VOCT = k [SE]0 [TSA]1, VBUT = k [SE]0 [TSA]0.63, and VET = k [SE]0 [TSA]0.7 at [SE] \( \gg \) [TSA]. The proximity of the oxidation activation energies in three alcohols contrasts with the difference in the oxidation rates: the oxidation rate in ET is three times the rate in n-butanol and thirty times the oxidation rate in 1-octanol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. J. Gorzynski Smith, Synthesis 8, 629 (1984). https://doi.org/10.1055/s-1984-30921

    Article  Google Scholar 

  2. I. Vilotijevic and T. F. Jamison, Angew. Chem. Int. Ed. 48, 5250 (2009). https://doi.org/10.1002/anie.200900600

    Article  CAS  Google Scholar 

  3. A. V. Krylov, A. K. Mokhammad, V. V. Yegorova, E. Ya. Borisova, N. Yu. Borisova, and V. R. Flid, Russ. Chem. Bull. 61, 1128 (2012). https://doi.org/10.1007/s11172-012-0153-z

    Article  CAS  Google Scholar 

  4. T. Weil, M. Kotke, Ch. M. Kleiner, and P. R. Schreiner, Org. Lett. 10, 1513 (2008). https://doi.org/10.1021/ol800149y

    Article  CAS  PubMed  Google Scholar 

  5. Y.-X. Zhou, Y.-Z. Chen, Y. Hu, G. Huang, S.-H. Yu, and H.-L. Jiang, Chem. Eur. J. 20, 1 (2014). https://doi.org/10.1002/chem.201404104

    Article  CAS  Google Scholar 

  6. A. Dhakshinamoarhy, M. Alvaro, P. Concepcion, V. Fornes, and H. Garsia, Chem. Commun. 48, 5443 (2012). https://doi.org/10.1039/c2cc31385e

    Article  CAS  Google Scholar 

  7. R. E. Parker, N. S. Isaacs, Chem. Rev. 53, 737 (1959). https://doi.org/10.1021/cr50028a006

    Article  Google Scholar 

  8. J. Biggs, N. B. Chapman, A. F. Finch, and V. J. Wray, Chem. Soc. B 1, 55 (1971). https://doi.org/10.1039/J29710000055

    Article  Google Scholar 

  9. L. V. Petrov and V. M. Solyanikov, Dokl. Phys. Chem. 350, 252 (1996).

    Google Scholar 

  10. M. G. Spirin, S. B. Brichkin, and L. V. Petrov, Russ. Chem. Bull. 65, 2452 (2016). https://doi.org/10.1007/s11172-016-1605-7

    Article  CAS  Google Scholar 

  11. L. V. Petrov and V. M. Solyanikov, Russ. J. Phys. Chem B 16 (2022).

  12. L. V. Petrov and V. M. Solyanikov, Pet. Chem. 39, 89 (1999).

    Google Scholar 

  13. L. V. Petrov and V. M. Solyanikov, Pet. Chem. 43, 177 (2003).

    Google Scholar 

  14. L. V. Petrov and V. M. Solyanikov, Pet. Chem. 52, 327 (2012). https://doi.org/10.1134/S096554411205009X

    Article  CAS  Google Scholar 

  15. L. V. Petrov and V. M. Solyanikov, Russ. J. Phys. Chem. B 10, 764 (2016). https://doi.org/10.1134/S1990793116050225

    Article  CAS  Google Scholar 

  16. L. V. Petrov and V. M. Solyanikov, Russ. J. Phys. Chem. B 12, 1003 (2018). https://doi.org/10.1134/S1990793118060179

    Article  CAS  Google Scholar 

  17. L. V. Petrov and V. M. Solyanikov, Russ. J. Phys. Chem. B 14, 29 (2020). https://doi.org/10.1134/S199079312001011X

    Article  CAS  Google Scholar 

  18. L. V. Petrov and V. M. Solyanikov, Russ. J. Phys. Chem. B 15, 599 (2021). https://doi.org/10.1134/S1990793121040084

    Article  CAS  Google Scholar 

  19. L. V. Petrov and V. M. Solyanikov, Pet. Chem. 50, 154 (2010). https://doi.org/10.1134/S096554411002012X

    Article  Google Scholar 

Download references

Funding

This study was carried out on the topic of a state assignment (topic no. AAAA–A19–119071890015–6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. V. Petrov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solyanikov, V.M., Petrov, L.V. The Rate of the Oxygen Absorption by the Styrene Epoxide–p-Toluene Sulfonic Acid Double System Depending on the Structure of the Aliphatic Tail of the Alcohol Solvent. Russ. J. Phys. Chem. B 17, 1259–1264 (2023). https://doi.org/10.1134/S1990793123060234

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793123060234

Keywords:

Navigation