Log in

First-Principles Investigations on Structure Stability, Electronic and Optical Characterization of Hg(IO3)2 under Pressure

  • STRUCTURE OF CHEMICAL COMPOUNDS, QUANTUM CHEMISTRY, SPECTROSCOPY
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

We investigate the structural, electronic, and optical properties of Hg(IO3)2 under pressure within density-function theory. The crystal structure is fully relaxed, and the structural parameters are found to be well consistent with the experimental data. First-principles calculation provides considerable insight into the relationship between electronic structure and optical properties. The electronic band structure shows that the valence band maximum (VBM) and conduction band minimum (CBM) of monoclinic Hg(IO3)2 are mainly contributed by I 5p states with some Hg 5d and Hg 6s states, while the p-orbital contributions of O atom and Hg atom are very weak. Furthermore, the absorption, reflectivity, refractive index and extinction coefficient have been calculated using the imaginary part of the dielectric function. According to our work, we found that the optical properties of Hg(IO3)2 undergo a red shift with increasing pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. C. Chen and G. Liu, Annu. Rev. Mater. Sci. 16, 203 (1986).

    Article  CAS  Google Scholar 

  2. K. M. Ok, E. O. Chi, and P. S. Halasyamani, Chem. Soc. Rev. 35, 710 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. I. I. Mishanin and V. I. Bogdan, Russ. J. Phys. Chem. B 16, 1267 (2022). https://doi.org/10.1134/S1990793122070132

    Article  CAS  Google Scholar 

  4. V. A. Aleksandrova and A. M. Futoryanskaya, Russ. J. Phys. Chem. B 15, 1062 (2021). https://doi.org/10.1134/S1990793121060130

    Article  CAS  Google Scholar 

  5. A. G. Korotkikh, I. V. Sorokin, and V. A. Arkhipov, Russ. J. Phys. Chem. B 16, 253 (2022). https://doi.org/10.1134/S1990793122020075

    Article  CAS  Google Scholar 

  6. I. Gautier-Luneau, Y. Suffren, H. Jamet, J. Pilme, and Z. Anorg. Allg. Chem. 636, 1368 (2010).

    Article  CAS  Google Scholar 

  7. T. M. Valova, V. A. Barachevsky, A. I. Shienok, and N. L. Zaichenko, Russ. J. Phys. Chem. B 15, 591 (2021). https://doi.org/10.1134/S1990793121040114

    Article  CAS  Google Scholar 

  8. M. Szafrański and A. Katrusiak, J. Phys. Chem. Lett. 8, 2496 (2017).

    Article  PubMed  Google Scholar 

  9. B. Bentria, D. Benbertal, M. B. Beucher, A. Mosset, and J. Zaccaro, Solid State Sci. 5, 359 (2003).

    Article  CAS  Google Scholar 

  10. B. Lagoun, B. Bentria, and I. K. Lefkaier, Phys. B 433, 117 (2014).

    Article  CAS  Google Scholar 

  11. L. Zhang, C. Liu, Y. Lin, K. Wang, F. Ke, C. Liu, W. L. Mao, and B. Zou, J. Phys. Chem. Lett. 10, 1676 (2019).

    Article  CAS  PubMed  Google Scholar 

  12. D. Amgar, A. Stern, D. Rotem, D. Porath, and L. Etgar, Nano Lett. 17, 1007 (2017).

    Article  CAS  PubMed  Google Scholar 

  13. G. Kresse, and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).

    Article  CAS  Google Scholar 

  14. J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).

    Article  CAS  Google Scholar 

  15. D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566 (1980).

    Article  CAS  Google Scholar 

  16. H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).

    Article  Google Scholar 

  17. Y. H. Duan, Y. Sun, M. J. Peng, and S. G. Zhou, J. Alloy. Compd. 585, 587 (2014).

    Article  CAS  Google Scholar 

  18. A. J. Blanch, J. S. Quinton, C. E. Lenehan, and A. Pring, Miner. Mag. 72, 1043 (2008).

    Article  CAS  Google Scholar 

  19. P. Vinet, J. R. Smith, J. Ferrante, and J. H. Rose, J. Phys. C 19, L467 (1986).

    Article  CAS  Google Scholar 

  20. A. Daga, S. Sharma, and K. S. Sharma, Int. J. Eng. Sci. Technol. 4, 922 (2012).

    Google Scholar 

  21. A. S. Verma and A. Kumar, J. Alloys Compd. 541, 210 (2012).

    Article  CAS  Google Scholar 

  22. E. Meter, R. Shaltaf, and S. Ellialtıoğlu, Phys. Rev. B: Condens. Matter 68, 035119 (2003).

    Article  Google Scholar 

  23. K. H. Xue, P. Blaise, L. R. C. Fonseca, and Y. Nishi, Phys. Rev. Lett. 110, 065502 (2013).

    Article  PubMed  Google Scholar 

  24. J. Zhang, A. R. Oganov, X. F. Li, K. H. Xue, Z. H. Wang, and H. F. Dong, Phys. Rev. B 92, 184104 (2015).

    Article  Google Scholar 

  25. Y. O. Ciftci and M. Evecen, Phase Trans. 91, 1 (2018).

    Article  Google Scholar 

  26. R. W. Godby, M. Schluter, and L. Sham, Phys. Rev. B: Condens. Matter 36, 6497 (1987).

    Article  CAS  PubMed  Google Scholar 

  27. M. Szafrański and A. Katrusiak, J. Phys. Chem. Lett. 8, 2496 (2017).

    Article  PubMed  Google Scholar 

  28. S. Saha, T. P. Sinha, and A. Mookerjee, Phys. Rev. B 62, 8828 (2000).

    Article  CAS  Google Scholar 

  29. T. Grzyb, A. Szczeszak, and J. Rozowska, J. Phys. Chem. C 116, 3219 (2012).

    Article  CAS  Google Scholar 

  30. Y. Matsumoto, J. Solid State Chem. 126, 227 (1996).

    Article  CAS  Google Scholar 

  31. R. Devanathan, N. Yu, K. E. Sickafus, and M. Nastasi, J. Nucl. Mater. 232, 59 (1996).

    Article  CAS  Google Scholar 

  32. F. Urbach, Phys. Rev. 92, 1324 (1953).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Parts of the calculations were performed at the Center for Computational Science of CASHIPS, the ScGrid of Supercomputing Center, and the Computer Network Information Center of the Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Y. Li.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B.Y., Wang, M. First-Principles Investigations on Structure Stability, Electronic and Optical Characterization of Hg(IO3)2 under Pressure. Russ. J. Phys. Chem. B 17, 878–885 (2023). https://doi.org/10.1134/S1990793123040103

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793123040103

Keywords:

Navigation