Log in

Study of the Time Dependence and One Dimentional Simulation of a Dielectric Barrier Discharge Reactor Driven by Sinusoidal High-Frequency Voltage

  • EFFECT OF EXTERNAL FACTORS ON PHYSICOCHEMICAL CONVERSIONS
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

In this study, we aim for the designing of a dielectric barrier discharge (DBD) reactor under atmospheric pressure. The present need is to characterize the plasmas and optimization of the designed plasma system under variable conditions. The time-dependent, one-dimensional simulation of a DBD device, driven by a sinusoidal RF voltage of amplitude 740 kV at 51 kHz, in argon gas is demonstrated. A DBD device with two electrodes, covered by the dielectric material and with the variable dielectric constant (relative permittivity) ranging between 7, 8, 9 and 10 was assumed, and the discharge parameters were simulated versus time across the plasma gap to find an optimized dielectric constant for maximum power deposition. By applying a sinusoidal voltage to the DBD device with different dielectric constant, the profiles of electric field, electron density, electron temperature, mass fraction of argon atoms, mean electron energy, ion current density, electron current density, plasma, total current and power deposition are demonstrated. The effect of applied voltage parameters such as voltage amplitude and frequency on the discharge characteristics for optimized capacitive power deposition was investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.

REFERENCES

  1. M. M. Nasiru, E. B. Frimpong, U. Muhammad, et al., Compr. Rev. Food Sci. Food Saf. 20, 2626 (2021).

    Article  CAS  PubMed  Google Scholar 

  2. R. Snoeckx and A. Bogaerts, Chem. Soc. Rev. 46, 5805 (2017).

    Article  CAS  PubMed  Google Scholar 

  3. A. H. Khoja, M. Tahir, and N. A. S. Amin, Energy Convers. Manage. 183, 529–560 (2019).

    Article  CAS  Google Scholar 

  4. A. Barjasteh and E. Eslami, Plasma Chem. Plasma Process. 38, 261 (2018).

    Article  CAS  Google Scholar 

  5. C. Hertwig, N. Meneses, and A. Mathys, Trends Food Sci. Technol. 77, 131 (2018).

    Article  CAS  Google Scholar 

  6. L. Brès, N. Gherardi, N. Naudé, and B. Rives, EPJ Appl. Phys. 95, 30801 (2021).

    Google Scholar 

  7. M. Li, C. Han and W. Liu, EPJ Appl. Phys. 82, 30801 (2018).

    CAS  Google Scholar 

  8. A. Kropotkin and D. Voloshin, Plasma Phys. Rep. 45, 786 (2019).

    Article  CAS  Google Scholar 

  9. E. Usenov, Y. S. Akishev, A. Petryakov, et al., Plasma Phys. Rep. 46, 459 (2020).

    Article  Google Scholar 

  10. T.-L. Sung, S. Teii, C.-M. Liu, R.-C. Hsiao, P.-C. Chen, Y.-H. Wu, C.-K. Yang, S. Ono, K. Ebihara, and K. Teii, IEEE Trans Plasma Sci. 40, 2751 (2012).

    Article  CAS  Google Scholar 

  11. A. Al-Abduly, P. Christensen, and A. Harvey, Plasma Sources Sci. Technol. 29, 035002 (2020).

    Article  CAS  Google Scholar 

  12. A. Hafeez, F. Javed, T. Fazal, et al., Chem. Eng. Proc.-Process Intensif. 159, 108205 (2021).

    Article  CAS  Google Scholar 

  13. S. Dahle, J. Hirschberg, W. Viöl, and W. Maus-Friedrichs, Plasma Sources Sci. Technol. 24, 035021 (2015).

    Article  Google Scholar 

  14. A. Barjasteh, Z. Dehghani, P. Lamichhane, et al., Appl. Sci. 11, 3372 (2021).

    Article  CAS  Google Scholar 

  15. S. Saidi, H. Loukil, K. Khodja, A. Belasri, B. Caillier, and P. Guillot, IEEE Trans Plasma Sci. 50, 2147 (2022).

    Article  CAS  Google Scholar 

  16. N. K. Kaushik, H. Uhm, and E. Ha Choi, Appl. Phys. Lett. 100, 084102 (2012).

    Article  Google Scholar 

  17. C. Jia, P. Chen, W. Liu, B. Li, and Q. Wang, Appl. Surf. Sci. 257, 4165 (2011).

    Article  CAS  Google Scholar 

  18. R. Fan, Y. Wang, Y. Liu, et al., Phys. Plasmas 27, 083508 (2020).

    Article  CAS  Google Scholar 

  19. E. Feizollahi, N. Misra, and M. Roopesh, Crit. Rev. Food Sci. Nutr. 61, 666 (2021).

    Article  CAS  PubMed  Google Scholar 

  20. R. Kenneth Marcus, E. D. Hoegg, K. A. Hall, T. J. Williams, and D. W. Koppenaal, Mass Spectrom. Rev. (2021).

  21. B. Wanten, S. Maerivoet, C. Vantomme, et al., J. CO2 Util. 56, 101869 (2022).

  22. X. Peng and Z. Wang, Anal Chem. 91, 10073 (2019).

    Article  CAS  PubMed  Google Scholar 

  23. C. A. Aggelopoulos, Chem. Eng. J. 428, 131657 (2022).

    Article  CAS  Google Scholar 

  24. A. Bahrami, COMPEL 38, 2040 (2019).

    Article  Google Scholar 

  25. H. Guo, Y. Wang, L. Liao, et al., Chem Eng. J. 436, 135239 (2022).

    Article  CAS  Google Scholar 

  26. K. Sergeichev, N. Lukina, L. Apasheva, E. Ovcharenko, and A. Lobanov, Russ. J. Phys. Chem. B 16, 84 (2022).

    Article  CAS  Google Scholar 

  27. V. Shumova, D. Polyakov, and L. Vasilyak, Russ. J. Phys. Chem. B 16, 912 (2022).

    Article  CAS  Google Scholar 

  28. V. Y. Levashov, P. Kozlov, N. Bykova, and I. Zabelinskii, Russ. J. Phys. Chem. B 15, 56 (2021).

    Article  CAS  Google Scholar 

  29. V. Shumova, D. Polyakov, and L. Vasilyak, Russ. J. Phys. Chem. B 15, 691(2021).

    Article  CAS  Google Scholar 

  30. A. Meshchanov, Y. Z. Ionikh, and Y. S. Akishev, Plasma Phys. Rep. 46, 1124 (2020).

    Article  Google Scholar 

  31. R. R. Khanikar and H. Bailung, in Plasma Science and Technology (IntechOpen, 2021).

    Google Scholar 

  32. C. Hoffmann, C. Berganza, and J. Zhang, Med. Gas Res. 3, 1 (2013).

    Article  Google Scholar 

  33. M. Hosseinpour and A. Zendehnam, J. Theor. Appl. Phys. 12, 271 (2018).

    Article  Google Scholar 

  34. S. Das, G. Dalei and A. Barik, IOP Conf. Ser.: Mater. Sci. Eng. 410, 012004 (2018).

  35. A. M. Lopez, H. Piquet, D. Patino, R. Diez, and X. Bonnin, IEEE Trans Plasma Sci. 41, 2335 (2013).

    Article  Google Scholar 

  36. F. Sohbatzadeh and H. Soltani, J. Theor. Appl. Phys. 12, 53 (2018).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Poorreza.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poorreza, E., Dadashzadeh Gargari, N. Study of the Time Dependence and One Dimentional Simulation of a Dielectric Barrier Discharge Reactor Driven by Sinusoidal High-Frequency Voltage. Russ. J. Phys. Chem. B 17, 631–645 (2023). https://doi.org/10.1134/S1990793123030107

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793123030107

Keywords:

Navigation